Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Đặng Phương
Xem chi tiết
Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 19:27

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 21:54

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

không cần biết
Xem chi tiết

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

Khách vãng lai đã xóa
DOC CO CAU BAI
Xem chi tiết
Trần Nguyễn Ngọc Hưng
Xem chi tiết
Nguyễn Đăng Nhân
21 tháng 2 2022 lúc 17:57

Ta đổi chiều bất đẳng thức, khi đó bất đẳng thức cần chứng minh tương đương với:

\(18\left(\frac{a^3}{1+a^3}+\frac{b^3}{1+b^3}+\frac{c^3}{1+c^3}\right)+\left(a+b+c\right)^3\ge54\)

Để ý abc=1 thì \(\frac{a^3}{1+a^3}=\frac{a^3}{abc+a^3}=\frac{a^2}{bc+a^2}\)nên bất đẳng thức trên thành:

\(18\left(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\right)+\left(a+b+c\right)^3\ge54\)

Lại cũng từ \(abc=1\) ta có \(\left(a+b+c\right)^3\ge27abc=27\), do đó ta sẽ chứng minh được khi ta chỉ ra được:

\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{3}{2}\)

Vế trái của đánh giá trên áp dụng bất đẳng thức Bunhiacopxki dạng phân thức. Lúc này ta được:

\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

Tuy nhiên để đến khi \(a=b=c=1\) thì:

\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}=\left(a+b+c\right)^3=27\)

Ta sử dụng bất đẳng thức Cauchy dạng \(x+y\ge2\sqrt{xy}\), khi đó ta được:

\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}+\left(a+b+c\right)^3\ge\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\)

Chứng minh sẽ hoàn tất nếu ta chỉ được:

\(\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\ge54\Leftrightarrow\left(a+b+c\right)^5\ge\frac{81}{2}\left(a^2+b^2+c^2+ab+bc+ca\right)\)

Vậy theo bất đẳng thức Cauchy ta được:

\(\left(a+b+c\right)^6=\left[\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\right]^3\)

\(\ge27\left(a+b+c\right)^2\left(ab+bc+ca\right)^2\ge81abc\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=81\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

Khi đó ta được:

\(\left(a+b+c\right)^5\ge81\left(a^2+b^2+c^2\right)\)

Vậy ta cần chỉ ra rằng:

\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)

Vậy bất đẳng thức trên tương đương với \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\), là một bất đẳng thức hiển nhiên đúng.

Vậy bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Đỗ Xuân Tuấn Minh
Xem chi tiết
Tran Le Khanh Linh
12 tháng 4 2020 lúc 16:03

1) Bài này có 2 cách giải

Cách 1:

để ý rằng \(\hept{\begin{cases}1-x^2=\left(1-x\right)\left(1+x\right)=\left(y+z\right)\left(2x+y+z\right)\\x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\end{cases}}\)

ta có: \(\frac{1-x^2}{x+yz}=\frac{a\left(b+c\right)}{bc}=\frac{a}{b}+\frac{a}{c}\)

trong đó: \(a=y+z;b=z+x;c=x+y\). Tương tự, ta cũng có:

\(\hept{\begin{cases}\frac{1-y^2}{y+zx}=\frac{b}{c}+\frac{b}{a}\\\frac{1-z^2}{z+xy}=\frac{c}{a}+\frac{c}{b}\end{cases}}\)

Do đó sử dụng BĐT AM-GM ta có:

\(VT_{\left(1\right)}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)

Dấu "=" xảy ra khi a=b=c và x=y=z=\(\frac{1}{3}\)

Cách 2:

Sử dụng BĐT AM-GM  dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x+yz\le x+\frac{\left(y+z\right)^2}{4}=x+\frac{\left(1-x\right)^2}{4}=\frac{\left(1+x\right)^2}{4}\)

Do đó: \(\frac{1-x^2}{x+yz}\ge\frac{4\left(1-x^2\right)}{\left(1+x\right)^2}=\frac{4\left(1-x\right)}{1+x}=4\left(\frac{2}{1+x}-1\right)\)

tương tự có:\(\hept{\begin{cases}\frac{1-y^2}{x+yz}\ge4\left(\frac{2}{1+y}-1\right)\\\frac{1-z^2}{z+xy}\ge4\left(\frac{2}{1+z}-1\right)\end{cases}}\)

Cộng các đánh giá trên và sử dụng BĐT Cauchy-Schwarz dạng cộng mẫu, ta được

\(VT_{\left(1\right)}\ge8\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)-12\)

               \(\ge8\cdot\frac{9}{3+x+y+z}+12=6\)

Khách vãng lai đã xóa
Hoàng Thị Mai Hương
Xem chi tiết
Kiệt Nguyễn
12 tháng 6 2020 lúc 13:36

Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:

\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)

\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Vũ Thảo Vy
Xem chi tiết
Incursion_03
23 tháng 12 2018 lúc 8:18

Ad bđt : \(xy+yz+zx\le x^2+y^2+z^2\) (Cái bđt này c/m dễ : Nhân 2 vế với 2 -> chuyển vế -> tổng bình phương > 0 luôn đúng)

Kết hợp với bđt Cô-si cho 2 số dương ta đc

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\left(\frac{a^3}{b}+ab\right)+\left(\frac{b^3}{c}+bc\right)+\left(\frac{c^3}{a}+ac\right)-\left(ab+bc+ca\right)\)

                                   \(\ge2\sqrt{\frac{a^3}{b}.ab}+2\sqrt{\frac{b^3}{c}.bc}+2\sqrt{\frac{c^3}{a}.ac}-\left(a^2+b^2+c^2\right)\)

                                       \(=2a^2+2b^2+2c^2-a^2-b^2-c^2\)

                                        \(=a^2+b^2+c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\left(1\right)\)

Áp dụng bđt Cô-si cho 2 số dương

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ac\)

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(c^2+1\ge2c\)

Cộng từng vế của 6 bđt trên lại ta đc

\(3\left(a^2+b^2+c^2+1\right)\ge2\left(ab+bc+ca+a+b+c\right)\)

 \(\Leftrightarrow3\left(a^2+b^2+c^2+1\right)\ge2.6\)

\(\Leftrightarrow a^2+b^2+c^2+1\ge4\)

\(\Leftrightarrow a^2+b^2+c^2\ge3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c+ab+bc+ca=6\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+a+a+aa+aa+aa=6\end{cases}}\)(thay hết b , c thành a)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\3a^2+3a=6\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2+a-2=0\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}a=b=c\\\left(a-1\right)\left(a+2\right)=0\end{cases}}\)

                          \(\Leftrightarrow a=b=c=1\)hoặc \(a=b=c=-2\)

Mà a,b,c là các số dương nên a = b = c  = 1

Vậy ............

Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết

Bạn kia làm sai r

Ta có đánh giá quen thuộc \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

mà \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)

do đó \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)

Phép chứng minh hoàn tất khi ta cm được

\(\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)

hay \(3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

Theo bđt AM-GM ta có

\(\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\)

\(\ge3\sqrt[3]{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}\)

hay \(\left(a+b+c\right)^6\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

mà a+b+c=3 nên \(\left(a+b+c\right)^6=81\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

Khách vãng lai đã xóa
Kiệt Nguyễn
16 tháng 6 2020 lúc 12:18

Xét BĐT phụ \(\frac{1}{a^2}+4a\ge a^2+4\Leftrightarrow\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}\ge0\)

Đến đây, ta đưa điều phải chứng minh về dạng \(\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}+\frac{\left(b-1\right)^2\left(1+2b-b^2\right)}{b^2}+\frac{\left(c-1\right)^2\left(1+2c-c^2\right)}{c^2}\ge0\)(*)

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Xét hai trường hợp:

Trường hợp 1: \(a\le1+\sqrt{2}\Rightarrow c\le b\le a\le1+\sqrt{2}\)

Khi đó thì \(1+2a-a^2\ge0;1+2b-b^2\ge0;1+2c-c^2\ge0\)dẫn đến (*) đúng

Trường hợp 2: \(a>1+\sqrt{2}\Rightarrow b+c=3-a< 3-\left(1+\sqrt{2}\right)=2-\sqrt{2}< \frac{2}{3}\)

\(\Rightarrow bc\le\frac{\left(b+c\right)^2}{4}< \frac{\frac{4}{9}}{4}=\frac{1}{9}\)

Mà a,b,c dương nên \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}>18>\left(a+b+c\right)^2>a^2+b^2+c^2\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
tth_new
21 tháng 6 2020 lúc 10:04

SOS là nhanh nhất!

\(\frac{\left(a+b+c\right)^2}{9}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\frac{9\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

Ta có: \(9a^2b^2c^2\left(a+b+c\right)^2\left(\text{VT}-\text{VP}\right)\)

\(=\Sigma\left(a^4b^2+12a^3bc^2+2a^3c^3+a^2b^4+24abc^4+6b^3c^3+4b^2c^4+4bc^5\right)\left(a-b\right)^2\ge0\)

Khách vãng lai đã xóa