Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Xuân Thành
29 tháng 8 2023 lúc 12:00

\(y^2=-2\left(x^6-x^3y-32\right)\)

\(\Leftrightarrow2x^6-2x^3y+y^2=64\)

\(\Leftrightarrow4x^6-4x^3y+2y^2=128\)

\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)

Áp dụng bất đẳng thức sau: \(A^2+B^2\ge\dfrac{\left(A+B\right)^2}{2}\), ta có:

\(\left(2x^3-y\right)^2+y^2\ge\dfrac{\left(2x^3-y+y\right)^2}{2}=2x^6\)

\(\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\)

\(\Leftrightarrow-2\le x^2\le2\)

Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)

Huyền Trang
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 12 2020 lúc 7:05

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

Đoàn Thanh Bảo An
Xem chi tiết
Elly Nguyễn
19 tháng 10 2017 lúc 7:55

\(y^2=-2\left(x^6-x^3y-32\right)\Leftrightarrow2x^6-2x^3y+y^2=64\Leftrightarrow4x^6-4x^3y+2y^2=128\)

\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)

# Chứng minh và áp dụng bất đẳng thức sau \(A^2+B^2\ge\frac{\left(A+B\right)^2}{2}\), ta có :

\(\left(2x^3-y\right)^2+y^2\ge\frac{\left(2x^3-y+y\right)^2}{2}=2x^6\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\Leftrightarrow-2\le x^2\le2\)

Mà x nguyên ( gt ) nên x có các giá trị sau : \(-2;-1;0;1;2\)

Nên các giá trị của x vào phương trình và giải tìm y ( lưu ý xét điều kiện nguyên của y )

nguyen ha anh thu
21 tháng 12 2017 lúc 20:00

660 [ mk ko bt cau nay ư vi mk lp 4

Quang Đẹp Trai
Xem chi tiết
KAITO KUROBA
23 tháng 6 2023 lúc 0:33

x=y=z=2

Mai Tiến Đỗ
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 15:30

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

Kan Zandai Nalaza
Xem chi tiết
alibaba nguyễn
23 tháng 5 2017 lúc 15:14

Xem lại đề đi bạn. Thấy có vẻ sai sai sao ấy Kan Zandai Nalaza 

Thắng Nguyễn
23 tháng 5 2017 lúc 16:57

vẻ vang gì 100% sai

Thắng Nguyễn
24 tháng 5 2017 lúc 10:19

đề đúng Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến

Nguyễn Anh Dũng An
Xem chi tiết
Nguyễn Tuấn Đức
Xem chi tiết
Tẫn
9 tháng 12 2018 lúc 21:00

\(\left(3x-2y\right)^2+\left(3y-4z\right)^4+\left(x^2+y^2+z^2-1\right)=0\)

Vì \(\left(3x-2y\right)^2\ge0;\left(3y-4x\right)^4\ge0\)

\(\Rightarrow VT=0\Leftrightarrow3x-2y=0;3y-4z=0;x^2+y^2+z^2-1=0\)

....... ( típ theo tự làm nhé eiu)

♡ ♡ ♡ ♡ ♡
Xem chi tiết
Bùi Thị Hải Châu
24 tháng 1 2017 lúc 7:14

???lolangnhonhung

Trần Thiên Kim
29 tháng 1 2017 lúc 17:04

P.An hở

Trịnh Trân Trân
2 tháng 2 2017 lúc 15:39

Hay :) :) :)