Cho n là một số tự nhiên lớn hơn 1. CMR \(2^n\) là tổng của hai số tự nhiên lẻ liên tiếp.
a. Viết dạng tổng quát của ba số tự nhiên lẻ liên tiếp.
b. Tìm ba số tự nhiên lẻ liên tiếp biết rằng tích của hai số sau lớn hơn tích của hai số trước là 20
a, n-2;n;n+2 ( n là số tự nhiên lẻ >= 3 )
b,n(n+2)-n(n-2) = 20 <=> n(n+2-n+2)=20
<=> 4n = 20 <=> n=5
vậy 3 số đó là 3,5,7
(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1
Vậy ba số tự nhiên lẻ tiên tiếp cần tìm là 3(=2.1+1);5(=2.1+2);7(=2.1+5)
CMR : nếu m2-n2 là một số nguyên tố thì m và n là hai số tự nhiên liên tiếp
Tổng của p số lẻ liên tiếp có là một số nguyên tố không?
1:
m^2-n^2=(m-n)(m+n)
Vì m+n>m-n và m^2-n^2 là số nguyên tố
nên m-n=1
=>m và n là hai số liên tiếp
2: Xét p số lẻ 2n+1;2n+3;...;2n+2p-1
Tổng là:
S=2n+1+2n+3+...+2n+2p-1
=p(2n+p)
=>S ko là số nguyên tố
Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là một số chia hết cho n, nếu n lẻ.
b) Tổng của số n số tự nhiên liên tiếp là một số không chia hết cho n, nếu n chẵn.
bài 3
http://data.nslide.com/uploads/resources/620/3533369/preview.swf
Bài 2: Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là một số chia hết cho n, nếu n lẻ.
b) Tổng của số n số tự nhiên liên tiếp là một số không chia hết cho n, nếu n chẵn.
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
Ai tích mk mk sẽ tích lại
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
chứng tỏ rằng:
(a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ?
(b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn?
Ta có AEED =dt(AEN)dt(DEN) =hA→MNhD→MN =dt(AMN)dt(DMN)
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy AEED =dt(AMN)dt(DMN) =18 dt(ABC)14 dt(ABC) =12 , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
k mình nha
không nên:
Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.1.CMR nếu m2-n2 thuộc Tap so Nguyen to thì m và n là hai số tự nhiên liên tiếp
2.Tổng của p số lẻ liên tiếp có phải là 1 số nguyên tố không?
1. thuộc P là thuộc gì ?
2. Có thể có có thể không, tùy vào p.
Ý bạn là Thuộc P là thuộc số nguyên tố đúng không
Chứng tỏ rằng:
(a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ?
(b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn?
Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ
b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn
Ta có 1+2+...+n=n(n+1) chia hết cho n với mọi n
1) Chứng minh rằng tổng n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ ?
2) Chứng minh tổng n số tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn ?
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn