10^8+8 chia hết cho 72
CMR : 10^28 + 8 chia hết cho 72
b, 8^8 + 2^20 chia hết cho 17
10^8+8 chia hết cho 72
Ta có:
\(10^8+8=100000000+8=100000008⋮9\left(1\right)\)
mà \(10^8=2^8.5^8=2^3.2^5.5^8=8.2^5.5^8⋮8\)
\(\Rightarrow10^8+8⋮8\left(2\right)\)
Từ (1) và(2) => 10^8+8 chia hết cho 72
Ta có:
\(10^8+8=100000008\)
=>100000008 chia hết cho ( do tổng số các chữ số là 9)
Ta lại có:
\(\text{100000008=8+}2^5.5^8.8\)
Do đó 10000008 chia hết cho 8
=>\(10^8+8\)chia hết cho 8(đpcm)
CMR:
a)10^28 + 8 chia hết cho 72
b)8^8 +2^20 chia hết cho 17
B) 8^8 + 2^20
= (2^3)^8 + 2^20
=2^24+2^20
=2^20 . (2^4 .1)
= 2^20 .17
=>8^8+2^20 chia hết cho 17
a)
Ta có:10^28+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1)
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2)
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72
Nếu chưa học thì giải zầy:
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1
=>10^28+8 chia hết cho 8.9=72
Chứng minh rằng:
a)10^28 + 8 chia hết cho 72
b)8^8+2^20 chia hết cho 17
c)10^n+18n+1chia hết cho 27
d)10^n +72n -1 chia hết cho 81
d) \(10^n+72n-1\)\(=100...0-1+72n\)
=\(999...9-9n+81n\)
n chữ số 9
=\(9.\left(111...1-n\right)+81n\)
VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9
mà 81n chia hết 9 => 10n + 72n -1 chia hết 9
b) \(10^n+18n-1\)
<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)
n
<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)
n
<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)
n
<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)
<=> \(9.9k+27n\)chia hết \(27\)
<=> \(81k+27n\)chia hết \(27\)
a) \(10^{28}+8\)chia hết cho 72
\(\Rightarrow10^{28}:9\)dư 1
\(\Rightarrow8:9\)dư 8
\(\Rightarrow1+8=9\)chia hết cho 9
\(\Rightarrow10^{28}+8\)chia hết cho 9 ( 1 )
\(10^{28}\)chia hết cho 8 ( vì 3 sớ tận cùng là 000 chia hết cho 8 )
8 chia hết cho 8
\(\Rightarrow10^{28}+8\)chia hết cho 8 ( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với UCLN ( 8 ; 9 ) = 1 => ĐPCM
b) \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}.\left(2^4+1\right)=2^{20}.17\)chia hết cho 7 => ĐPCM
c) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
d
Chứng minh rằng:
a)10^28+8 chia hết cho 72
b)8^8+2^20 chia hết cho 17
chứng minh rằng
10^28+8 chia hết cho 72
b) 8^8+2^20 chia hết cho 17
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mà (8,9)=1
Mặt khác:10^28+8 chia hết cho 9
=>10^28+8 chia hết cho 8.9=72
b) 8^8+2^20 chia hết cho 17
=(2^3)^8+2^20
=2^(3.8)+2^20
=2^24+2^20
=2^20.2^4+2^20
=2^20.(2^4+1)
=2^20.17 chia hết cho 17
chứng minh :
A = 1+3+4+5+6+7+8+9+....+999999 chia hết cho 96
B = 8*8*8*8*8*8*....*8*9 chia hết cho 72
C = 80+90+100+110+....+9000 chia hết cho 3
D =(72+89)*(72+90)*(72+91)*.....*(72+300) chia hết cho 8
E = -2+-3+-4+-5+-6+-7+-8+-9+.......+-98 chia hết cho 0
Chứng minh rằng:
a, M = 8^8 + 2^20 chia hết cho 7
b, A = 10^28 + 8 chia hết cho 72
c, T = 2 + 2^2 + 2^3 + … + 2^60 chia hết cho 3, 7, 15
chứng tỏ
( 10^ 28 + 8 ) chia hết cho 72
(8^8 +2 ^ 20 ) chia hết cho 17
giúp mk với