Cho A=1+5+5^2+....+5^2006
Chứng tỏ A chia hết cho 31
Các bạn giúp mình nha mình cảm ơn nhiều nhiều
Chứng tỏ:1+5+5^2+....+5^99 chia hết 31
Các bạn giúp mình với mình cảm ơn rất nhiều
Số số hạng: (99-0):1+1=99(số hạng)
1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2) [vì có 99 số hạng chia hết cho 3]
=31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.
Số số hạng là :
( 99 - 0 ) : 1 + 1 = 99 ( số hạng )
\(1+5+5^2\)\(+...+5^{99}\)\(=\)\(\left(1+5+5^2\right)+5^3\)\(.\)\(\left(1+5+5^2\right)\)\(+\)\(5^6\)\(.\)\(\left(1+5+5^2\right)\)\(+...+\)\(5^{99}\)\(.\)\(\left(1+5+5^2\right)\) ( Vì có 99 số hạng chia hết cho 3 )
\(\Rightarrow\)\(31+5^3\)\(.\)\(31\)\(+\)\(5^6\)\(.\)\(31\)\(+...+\)\(5^{99}\)\(.\)\(31\)
\(=\)\(1+5+5^2\)\(+...+\)\(5^{99}\)\(.\)\(31\)chia hết cho \(31\)
giúp mình với
chứng tỏ 102018+ 5 chia hết cho 3 và 5
mình cảm ơn rất nhiều
102018+5=100..05(2017 số 0)
vì tận cùng là số 5 nên tổng 102018+5 chia hết cho 5
Tổng các chữ số: 1+0.2017+5=6
=>tổng 102018+5 chia hết cho 3
ta có : 102018+5= 100...005(có 2017 chữ số 0)
ta thấy 100...005 (có 2017 chữ số 0) có chữ số tận cùng là 5 nên chia hết cho 5
và 100...005(có 2017 chữ số 0) có tổng các chữ số là: 1+0+0+......+0+0+5=6 chia hết cho 3
2017 chữ số 0
Tìm UCLN n.(n+1):2 (2n+1) n N*
Cho tổng: A=1+4+4^2+4^3+...+4^23
a) CMR A chia hết cho 3
b) CMR A chia hết cho 7
c) CMR A chia hết cho 17
Mấy bạn giúp mình nha! Cảm ơn các bạn nhiều !
Các bạn giúp mình bài này với nhé :
Chứng tỏ rằng tổng sau chia hết cho 5 : S = 1 + 2 + 22 + 23+ 24 + 25 +...+ 263
Các bạn giúp mình nhé . Mai mình học rồi . cảm ơn các bạn nhiều lắm
S = 1 + 2 + 22 + 23 +24 + 25 +...+ 260 + 261 + 262 + 263
= ( 1 + 22) +( 2 + 23) + (24 + 26) + ( 25 + 27) +...+ (260 + 262) + ( 261 + 263)
=( 1 + 22) + 2 ( 1 + 22) + 24 (1 + 22) + 25 (1 +22)+...+ 260 ( 1 + 22) + 261( 1 + 22)
= ( 1 + 22)( 1 + 2 +24 + 25 +...+ 260)
= 5 ( 1 + 2 +24 + 25 +...+ 260)
Vậy S chia hết cho 5 vì có một thừa số là 5.
xin lỗi bạn nhé Thu Hà , mình nhấn nhầm tích, mình cảm ơn bạn nha, để câu hỏi khác mình k cho bạn nhé , thành thật xin lõi bạn
Chứng tỏ rằng :
A. Số abcabc chia hết cho 11.
B. Số (ab-ba) chia hết cho 9.
C. Số (ab+ba) chia hết cho 11.
Mong các bạn giúp đỡ mình nha. Nhanh nhanh giúp mình nhé vì ngày mai mình phải nộp rồi. Cảm ơn nhiều 😊
Vì abcabc = 1001 x abc
Mà 1001 lại chia hết cho 11
=> abcabc chia hết cho 11
Hội con 🐄 chúc bạn học tốt!!!
Bài này với các bạn giỏi đại cũng dễ thôi, giúp mình nhé!
Cho a, b là hai số tự nhiên. Chứng minh rằng nếu a + b chia hết cho 5 thì a^5 + b^5 chia hết cho 5^2
Cảm ơn mọi người nhiều
ta có a+b chia hết cho 5 thì tổng chữ số tận cùng của a và b là 5 hoặc 0
Lập bảng ra ta sẽ có bất cứ số nào lũy thừa 5 lên đều bất biến chữ số tận cùng nên sẽ chia hết cho 5^2
nhập hội ha
Tìm số tự nhiên lớn nhất có 3 chữ số sao cho n^2-n chia hết cho 5
Các bạn giúp mình với mình cảm ơn rất nhiều nhiều
n^2-n=NxN-N
Ta thấy rằng thì hai số có một chữ số(ý tớ là hàng đơn vị)thì số lớn nhất là 6
Vậy số tự nhiên lớn nhất là 996
Chứng tỏ rằng với mọi số tự nhiên n thì tích n × ( n+5) chia hết cho 2
Giải giúp mình với nhé!
Mình cần gấp, cảm ơn các bạn nhiều!
Xét các TH:
-TH1:\(n=2k\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)
-TH2:\(n=2k+1\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)
Xét \(\(2\)\) trường hợp
Trường hợp 1:
+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))
Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:
+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))
Theo bài ra ta có:
\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)
\(\(=2.\left(n^2+7n+3\right)⋮2\)\)
\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)
_Minh ngụy_
bài 1: tìm x thuoccj Z
a, x+5 chia hết cho x+3
b,x-7 chia hết cho 4-x
c,13-x chia hết cho x+4
d, 17-x chia hết cho 6-x
GIÚP MÌNH VỚI NHA MÌNH CẢM ƠN NHIỀU