Tìm số a để đa thức (4x^3+3x^2-9x+a) chia hết cho đa thức (x+2)
bài 1 : tìm a và b để cho đa thức A chia hết cho đa thức B khi:
A=4x ³+15x ²+24x+3+a và B=x ²+4x+7
A=x mũ 4-9x ³+21x ²+ax+b vả B=x ²-3x+2
a: \(\Leftrightarrow4x^3+16x^2+28x-x^2-4x-7+10+a⋮x^2+4x+7\)
hay a=-10
Cho đa thứcA=2x^4+3x^3-4x^2-3x+a và đa thức B = x + 2 Tìm a để đa thức A chia hết cho đa thức B
1)thực hiện phép chia đa thức x^3+3x^2+3 cho đa thức x^3+1
2)tìm số a để đa thức x^3+3x^2+3x+a chia hết cho đa thức x+2
Bài 1.
3x2 + 2 có bậc thấp hơn x3 + 1 nên không thể chia tiếp
Vậy x3 + 3x2 + 3 = 1( x3 + 1 ) + 3x2 + 2
Bài 2.
Ta có : x3 + 3x2 + 3x + a có bậc là 3
x + 2 có bậc là 1
=> Thương bậc 2
lại có hệ số cao nhất của đa thức bị chia là 1
Đặt đa thức thương là x2 + bx + c
khi đó : x3 + 3x2 + 3x + a chia hết cho x + 2
<=> x3 + 3x2 + 3x + a = ( x + 2 )( x2 + bx + c )
<=> x3 + 3x2 + 3x + a = x3 + bx2 + cx + 2x2 + 2bx + 2c
<=> x3 + 3x2 + 3x + a = x3 + ( b + 2 )x2 + ( c + 2b )x + 2c
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}b+2=3\\c+2b=3\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=1\\a=2\end{cases}}\Rightarrow a=2\)
Vậy a = 2
Tìm các hệ số a,b để đa thức f(x)=3x4+ax3+9x2+bx+16 chia hết cho đa thức g(x)=x2-5x+2. Khi đó a+b=...
Bai 1:
a)Tìm n để đa thức x^4-x^3+6x^2-x+n chia hết cho đa thức x^2-x+5
b)Tìm n để đa thức 3x^3+10x^2-5+n chia hết cho đa thức 3x+1
c)Tìm tất cả các số nguyên n để 2n^2+n-7 chia hết cho n-2
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
kiều hoa câu b dòng thứ 3 phải là\(x^2\left(3x+1\right)\)chứ
a). Tìm a để đa thức \(2x^3-x^2+4x+a\) chia hết cho đa thức \(x+2\)
b). Tìm số nguyên n để \(2n^2-n+2\) chia hết cho \(2n+1\)
c). Tìm giá trị nhỏ nhất của đa thức M = \(2x^2-8x-10\)
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
Tìm số tự nhiên n để đa thức A chia hết cho đa thức B :
A = x^4y^3+3x^3y^3+x^2y^n ; B = 4x^ny^2
Với mọi x, y
A chia hết cho B
<=> \(x^4y^3+3x^3y^3+x^2y^n⋮4x^ny^2\)
Khi đó: \(x^4;x^3;x^2⋮x^n\Rightarrow n\le2\)
\(y^3;y^n⋮y^2\Rightarrow n\ge2\)
Từ 2 điều trên => n = 2.
Tìm a để đa thức x^4 - 9x^3 + 21x^2 + x + a chia hết cho đa thức x^2 - x -2
a: \(\dfrac{A}{B}=\dfrac{x^3+4x^2+3x+12-19}{x+4}=x^2+3+\dfrac{-19}{x+4}\)
b: Để A chia hết cho B thì \(x+4\in\left\{1;-1;19;-19\right\}\)
=>\(x\in\left\{-3;-5;15;-23\right\}\)