Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0.
Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0
A = [n.(n+3)] . [(n+1).(n+2)]
= (n^2+3n).(n^2+3n+2) > (n^2+3n)^2 (1)
Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2 (2)
Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2
=> A ko phải là số chính phương
Tk mk nha
b,chứng minh rằng A= n.(n+1).(n+2).(n+3) không là số chính phương với mọi số tự nhiên n khác 0
Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0.
Khẩn cấp mọi người ơi,mai mk nộp....Help me!!!
Giả sử n=1
1x2x3x4=24
mà 24 ko là số chính phương
=>A = n(n+1)(n+2)(n+3) ko là số chính phương với mọi số m khác 0
Ta có:
A= n( n + 1 )( n + 2 )( n + 3 )
A = ( n2 + 3n )( n2 + 3n +2 )
A = ( n2 + 3n )2 + 2( n2 + 3n )
A= ( n2 + 3n )2
Mặt khác:
( n2 + 3n )2 < ( n2 + 3n )2 + 2( n2 + 3n )2 = A
=> A không là số chính phương
Chứng minh A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0.
Khẩn cấp mọi người ơi,mai mk nộp. ai nhanh mình tích
Ta có :
A=n(n+1)(n+2)(n+3)
=n(n+3).(n+1)(n+2)
=(n2+3n)(n2+3n+2)
=(n2+3n)2+2(n2+3n)⇒A>(n2+3n)2
=[(n2+3n)2+2(n2+3n)+1]−1
=(n2+3n+1)2−1
Có :
(n2+3n+1)2>A>(n2+3n)2 nên A không phải số chính phương ( Vì A nằm giữa hai số chính phương )
=n(n+3).(n+1)(n+2)
=(n2+3n)(n2+3n+2)
=(n2+3n)2+2(n2+3n)⇒A>(n2+3n)2
=[(n2+3n)2+2(n2+3n)+1]−1
=(n2+3n+1)2−1
Có :
Chứng minh rằng : Với mọi n thuộc N sao
a ) Tổng của n số tự nhiên lẻ đầu tiên là số chính phương
b ) Tổng của n số tự nhiên chẵn khác 0 đầu tiên không là số chính phương
chứng minh rằng: n4+3n3+4n2+3n+1 không là số chính phương với mọi số tự nhiên n khác 0
Lời giải:
$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$
Nếu đây là scp thì $n^2+n+1$ cũng phải là scp
Đặt $n^2+n+1=t^2$ với $t$ tự nhiên
$\Leftrightarrow 4n^2+4n+4=(2t)^2$
$\Leftrightarrow (2n+1)^2+3=(2t)^2$
$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$
$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$
$\Rightarrow n=0$ (trái giả thiết)
Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$
$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$
Ta có đpcm.
Chứng minh: A = n(n+1)(n +2)(n+3) không là số chính phương với mọi n thuộc N, n khác 0
A = [n(n+3)]. [(n+1).(n+2)] = (n2 + 3n). (n2 + 3n+ 2 ) = (n2 + 3n)2 + 2.(n2 + 3n)
Đặt a = n2 + 3n ( a > 0) =>A = a2 + 2a
Giả sử A là số chính phương => a2 + 2a = p2 ( p > 0) => (a + 1)2 = p2 + 1 => (a+1- p).(a+1+p) = 1
=> a + 1 +p = 1 => a + p = 0 Vô lí vò a;p > 0
Vậy A không là scp
Chứng minh với mọi số tự nhiên thì A= n(n+1)(n+2)(n+3)+1 là số chính phương
Chứng minh với mọi số tự nhiên thì A=n(n+1)(n+2)(n+3)+1 là số chính phương