Cho p là tích của 2022 số nguyên tố đầu tiên. Chứng minh rằng p-1 và p+1 khong là số chính phương
Cho p là tích của 2016 số nguyên tố đầu tiên. Chứng minh rằng p -1 và p + 1 không là số chính phương.
giúp mk đi sặp nộp bài rùi!!!!!!!!!!!!!!!!!!
Cho p là tích của 2016 số nguyên tố đầu tiên. Chứng minh rằng p-1 và p+1 không phải là số chính phương
cho p là tích của 2016 số nguyên tố đầu tiên. Chứng minh rằng p-1 và p+1 không là số chính phương
Chứng minh rằng nếu p là tích của n số nguyên tố đầu tiên thì p-1 và p+1 ko thể là số chính phương
Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương
Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)
http://olm.vn/hoi-dap/question/78421.html
roi do tick di
chứng minh rằng nếu p là tích của nguyên tố đầu tiên thì p -1 và p+1 không phải là số chính phương
Chứng minh rằng nếu P là tích của N số nguyên tố đầu tiên thì P-1 và P+1 không thể là các số chính phương
chứng minh rằng nếu p là tích của n số nguyên tố đầu tiên thì p - 1 và p + 1 không thể là các số chính phương
Nhận xét:Một số chính phương khi chia cho 3 và 4 có số dư là 0 hoặc 1(không chứng minh được thì ib vs mik)
Từ giả thiết,suy ra p chia hết cho 2 và 3 nhưng không chia hết cho 4
Như vậy vì p chia hết cho 3 suy ra p-1 chia 3 dư 2.suy ra p-1 không là số chính phương.(1)
Mặt khác p chia hết cho 2 mà không chia hết cho 4 suy ra p chia 4 dư 2 suy ra p+1 chia 4 dư 3 không là số chính phương.(2)
Từ (1) và (2) suy ra điều cần chứng minh.
Chứng minh rằng nếu p là tích của n số nguyên tố đầu tiên thì p - 1 và p + 1 không
thể là những số chính phương (với n ≥2).
Chứng minh rằng : nếu p là tích của n số nguyên tố đầu tiên thì p-1 và p+2 không thể là số chính phương.
Chứng minh rằng nếu p là tích của n số nguyên tố đầu tiên thì p,p-1,p+1 không là số chính phương