chứng minh rằng giá trị của mỗi biểu thức sau là bình phương của 1 số tự nhiên
a, 3mũ 2+4mũ 2
Mỗi tổng sau có là một số chính phương không?
A) 3mũ 2+4mũ 2;
B)5mũ 2+ 12mũ 2
a)32 + 42
= 9 + 16
= 25 = 52, là số chính phương
b)52 + 122
= 25 + 144
= 169 = 132, là số chính phương
Ủng hộ mk nha ☆_☆^_-
Chứng minh rằng với mọi số tự nhiên x thì giá trị biểu thức sau luôn viết được bằng tổng của hai số chính phương:
A=x^2+2(x+1)^2+3(x+2)^2+4(x+3)^2
Ta có
\(A=x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)
\(=10x^2+40x+50\)
\(=x^2+10x+25+9x^2+30x+25\)
\(=\left(x+5\right)^2+\left(3x+5\right)^2\) (đpcm)
chứng minh rằng giá trị của mỗi biểu thức sau luôn dương với mọi giá trị của biến
36x^2+6x+1
A= 1+ 3 +3 mũ 2 +3mũ 3 +3mũ 4 +...+3mũ 100
b= 1+ 4 +4mũ 2 +4mũ 3 +4mũ 4+...+4mũ 50
A=1+3+3^2+3^3+3^4+...+3^100
3A=3+3^2+3^3+3^4+...+3^101
3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)
2A=3^101-1
A=(3^101-1):2
phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé
chứng minh rằng giá trị của mỗi biểu thức sau luôn dương với mọi giá trị của biến \(^{x^2-x+1}\)(hằng đẳng thức)
= ( x2 - 2 .x . 1/2 +1/4 ) 3/4
= (x-1/2)2 + 3/4 >= 3/4 > 0 nên luôn dương V
học tốt
Ta có:
\(x^2-x+1\)
\(=x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\)với \(\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với\(\forall x\)
hay giá trị của mỗi biểu thức trên luôn dương với mọi giá trị của biến
chứng minh rằng với mọi số tự nhiên A thì giá trị của biểu thức sau là 1 số nguyên
A= n^4/24+n^3/4+11n^2/24+3/4
chứng minh rằng với mọi số tự nhiên A thì giá trị của biểu thức sau là 1 số nguyên
A= n^4/24+n^3/4+11n^2/24+3/4
biết số chính phương là bình phương của một số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh rằng a-b có giá trị là một số chính phương
\(a=111...1=\frac{10^{2n}-1}{9}=\frac{10^{2n}}{9}-\frac{1}{9}\)
\(b=222...2=\frac{2\left(10^n-1\right)}{9}=\frac{2.10^n}{9}-\frac{2}{9}\)
\(a-b=\frac{10^{2n}}{9}-\frac{1}{9}-\frac{2.10^n}{9}+\frac{2}{9}=\left(\frac{10^n}{3}\right)^2-2.\frac{10^n}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\)
\(=\left(\frac{10^n}{3}-\frac{1}{3}\right)^2\) Là 1 số chính phương
biết số chính phương là bình phương của một số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh rằng a-b có giá trị là một số chính phương