Tính: \(\left(3\sqrt{2}-5\sqrt{3}+1\right)\times\sqrt{2}\)
tính
\(\sqrt{2}\) ✖ (\(\sqrt{21}+3\)) ✖ \(\sqrt{5-\sqrt{21}}\)
\(\sqrt{2}\times\left(\sqrt{5}-1\right)\times\sqrt{3+\sqrt{5}}\)
\(\left(3\sqrt{5}+2\sqrt{6}+\sqrt{69}\right)\times\left(3\sqrt{5}+2\sqrt{6}-\sqrt{69}\right)\)
Tính
\(\left(\sqrt{3+\sqrt{5}}\right)\times\left(\sqrt{10}+\sqrt{2}\right)\times\left(3-\sqrt{5}\right)\)
Tính
\(=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}.\left(\sqrt{10}+\sqrt{2}\right).\frac{6-2\sqrt{5}}{2}\)
\(=\frac{\sqrt{5}+1}{\sqrt{2}}.\sqrt{2}\left(\sqrt{5}+1\right).\frac{\left(\sqrt{5}-1\right)^2}{2}\)
\(=\frac{\left(\sqrt{5}+1\right)^2.\left(\sqrt{5}-1\right)^2}{2}\)
\(=\frac{\left[\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)\right]^2}{2}\)
\(=\frac{4^2}{2}=8\)
1)tính kết quả:
a, A=\(2\times\sqrt{a}-3\times\sqrt{16}+5\times\sqrt{31}\)
b, B=\(\left(\sqrt{\frac{1}{16}}+\sqrt{\frac{4}{25}}\right)\div\sqrt{\frac{25}{36}}\)
c, \(\left(\sqrt{5}\right)^2-\left(2\times\sqrt{3}\right)^2+\left(4\times\sqrt{2}\right)^2\)
thực hiện phép tính:
\(\left(\sqrt{3}-2\right)\times\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
\(\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\times\left(3\sqrt{2}+\sqrt{14}\right)\)
rút gọn
a) \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}\)+\(\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
b)\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
c)\(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\times\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
d)\(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
a) Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
\(=\dfrac{-\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{-\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
\(=-2\sqrt{2}\)
b) Ta có: \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)
\(=\sqrt{2}\)
c) Ta có: \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
\(=\left(\dfrac{-\sqrt{5}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}-2\right)\left(\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}-2\right)\)
\(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
\(=-\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)=-1\)
d) Ta có: \(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
\(=\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{3}+\sqrt{2}\right)^2\)
\(=5-2\sqrt{6}+5+2\sqrt{6}\)
=10
a) Tính giá trị của biểu thức: A=\(\dfrac{\sqrt{\dfrac{5}{2}-\sqrt{6}}+\sqrt{\dfrac{5}{2}+\sqrt{6}}}{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}\)
b) Cho biểu thức B=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\times\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{\sqrt{x}+x}{\sqrt{x}+1}\right)\)(với x≥0;x≠1)
Rút gọn B rồi tìm điều kiện của x để B<0
b: Ta có: \(B=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\left(x+\sqrt{x}+1+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
BÀI 1 : THỰC HIỆN PHÉP TÍNH
a, \(\left(1+\sqrt{3}-\sqrt[2]{2}\right)\times\left(1+\sqrt{3}+\sqrt[2]{2}\right)\)
b, \(\left(\dfrac{3}{2}\times\sqrt{6}+2\times\sqrt{\dfrac{2}{3}}-4\times\sqrt{\dfrac{3}{2}}\right)\times\left(3\times\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
BÀI 2 : rút gọn
B = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-2}}\)
\(\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\times\left(\frac{-4}{15}\right)}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\times\frac{5}{7}}\)
\(\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\cdot\left(\frac{-4}{15}\right)}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\cdot\frac{5}{7}}\)
\(=-\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\cdot\frac{4}{15}}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\cdot\frac{5}{7}}\)
\(=-\frac{\frac{4}{15}\cdot\frac{5-4\sqrt{2}}{70}}{\frac{5}{7}\cdot\frac{5-4\sqrt{2}}{50}}\)
\(=-\frac{4\left(5-4\sqrt{2}\right)}{15\left(5-4\sqrt{2}\right)}\)
\(=-\frac{4}{15}\)