Tính \(A=\frac{1}{3\cdot7}+\frac{1}{7\cdot11}+\frac{1}{11\cdot15}+...+\frac{1}{91\cdot95}\)
\(\frac{4}{7\cdot11}-\frac{4}{11\cdot15}+...+\frac{4}{91\cdot95}\)
tính
tính nhanh :
\(B=\frac{1}{3\cdot7}+\frac{1}{7\cdot11}+\frac{1}{11\cdot15}+\frac{1}{15\cdot19}+\frac{1}{19\cdot23}+\frac{1}{23\cdot27}+\frac{1}{27\cdot31}+\frac{1}{31\cdot35}\)
\(A=\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{15}+\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
Phần 1)Đầu tiên bạn nhân B với 1 phần 4 rồi tính đến đoạn gần cuối sẽ ra 1/3 - 1/35 rồi quy đòng rồi tính sẽ ra kêt quả cuối là 32/105 nha
Mình lười lắm nên chỉ help 1 phần thui nha sr
CMR:Với mọi số tự nhiên n \(\ne\)0 ta đều có:
a.\(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{\left(3n-1\right)\cdot\left(3n+2\right)}=\frac{n}{6n+4}\)
b.\(\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+\frac{5}{11\cdot15}+...+\frac{5}{\left(4n-1\right)\cdot\left(4n+3\right)}=\frac{5n}{4n+3}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
Tính Nhanh:
D = \(\frac{4}{3\cdot7}-\frac{4}{7\cdot11}+\frac{4}{11\cdot15}-\frac{4}{15\cdot19}+\frac{4}{19\cdot23}-\frac{4}{23\cdot27}\)
tính nhanh và ko quy đồng
a] C = \(\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
b] B = \(\frac{6}{3\cdot5}+\frac{6}{5\cdot7}+\frac{6}{7\cdot9}+.....+\frac{6}{97\cdot99}\)
a) \(C=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{28}\right)\)
\(=7.\frac{13}{28}=\frac{7.13}{28}=\frac{13}{4}\)
b) \(B=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{97.99}\)
\(=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=3.\frac{32}{99}=\frac{3.32}{99}=\frac{32}{33}\)
a)\(\frac{1}{2}\)-\(\frac{1}{3\cdot7}\)-\(\frac{1}{7\cdot11}\)-\(\frac{1}{11\cdot15}\)-\(\frac{1}{15\cdot19}\)-\(\frac{1}{19\cdot23}\)-\(\frac{1}{23\cdot27}\)
b) 1-\(\frac{1}{5\cdot10}\)-\(\frac{1}{10\cdot15}\)-\(\frac{1}{15\cdot20}\)-...-\(\frac{1}{95\cdot100}\)
a) \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{19}-\frac{1}{19}+\frac{1}{23}-\frac{1}{23}+\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{1}{2}-\frac{2}{27}\)
\(=\frac{23}{54}\)
b) \(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+\frac{1}{20}-...-\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\frac{19}{100}\)
\(=1-\frac{19}{500}\)
\(=\frac{481}{500}\)
tính E=\(\frac{5}{1\cdot2}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
E=\(\frac{5}{1.2}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
E.\(\frac{1}{7}\)=\(\frac{5}{1.2.7}+\frac{4}{1.11.7}+\frac{3}{11.2.7}+\frac{1}{2.15.7}+\frac{13}{15.4.7}\)
E.\(\frac{1}{7}\)=\(\frac{5}{7.2}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
E.\(\frac{1}{7}\)=\(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
E.\(\frac{1}{7}\)=\(\frac{1}{2}-\frac{1}{28}\)
E.\(\frac{1}{7}=\frac{13}{28}\)
E=\(\frac{13}{28}:\frac{1}{7}=\frac{13}{4}\)
\(E=\frac{5}{1.2}+\frac{1}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(E=\frac{5}{2}+\frac{1}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}\)
\(E=\frac{5}{2}+\left(\frac{1}{11}+\frac{3}{22}\right)+\left(\frac{1}{30}+\frac{13}{60}\right)\)
\(E=\frac{5}{2}+\left(\frac{2}{22}+\frac{3}{22}\right)+\left(\frac{2}{60}+\frac{13}{60}\right)\)
\(E=\frac{5}{2}+\frac{5}{22}+\frac{15}{60}\)
\(E=\frac{55}{22}+\frac{5}{22}+\frac{1}{4}\)
\(E=\frac{60}{22}+\frac{1}{4}\)
\(E=\frac{30}{11}+\frac{1}{4}\)
\(E=\frac{120}{44}+\frac{11}{44}\)\(=\frac{131}{44}\)
k mình nha chúc bạn học giỏi
Tính nhanh:
\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)
\(=\frac{33.3+33.3+33.3+33.3+33.3}{486}\)
\(=\frac{99.5}{486}\)
\(=\frac{495}{486}\)
Gọi \(A=\frac{33}{2}+\frac{33}{6}+...+\frac{33}{486}\)
\(A=33.\left[\left(\frac{1}{1.2}+\frac{1}{2.3}\right)+\left(\frac{1}{3.6}+\frac{1}{6.9}\right)\left(\frac{1}{9.18}+\frac{1}{18.27}\right)\right]\)
\(A=33.\left[\frac{2}{3}+\frac{2}{9}+\frac{2}{27}\right]\)
\(A=66.\left[\frac{9}{27}+\frac{3}{27}+\frac{1}{27}\right]\)
\(A=66.\frac{13}{27}\)
\(A=\frac{286}{9}\)
sai hay đúng cx ko biết nha
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(=1+\frac{2}{3}-\frac{2}{3}+\frac{2}{5}-\frac{2}{5}+....+\frac{2}{15}\)
\(=1+\frac{2}{15}\)
\(=\frac{17}{15}\)
Cho dãy số : \(\frac{1}{1\cdot3};\frac{1}{5\cdot7};\frac{1}{9\cdot11};\frac{1}{13\cdot15};...;\frac{1}{101\cdot103}\)
Số số hạng của dãy số trên là
Số số hạng của dãy trên là: [(103 - 1) : 2 + 1] : 2 = 26 số
Tích nh mấy bạn trong nhóm VRCT