tim x,y,z biết x/10 = y/6 = z/21 và 5x+y-2z=28
tìm các số x,y,z biết ; x\10=y\6=z\21 và 5x+y-2z=28
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
suy ra \(\frac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2x}{42}=2\Rightarrow2x=84\Rightarrow x=42\)
Tìm x, y, z biết rằng
VD: x/10 = y/6 = z/21 và 5x + y - 2z = 28
Áp dụng tính chất dãy tỉ số bằng nhau
Ta có:
x/10 = y/6 = 7/21 = 5x + y - 2z/5 : 10 + 6 - 2 . 21 = 28/14=2
=> x/10 = 2 => x = 10 . 2 = 20
y / 6 = 2 =» 6 . 2 = 12
z / 21 =2 =» x = 21 . 2 = 42
Vậy x= 20 y=12 z=42
Làm hộ mình câu này :)
x/2 = y/3= z/4 và x + 2y - 3z =-20
\(\frac{X}{2}=\frac{Y}{3}=\frac{Z}{4}\)\(=\frac{X}{2}=\frac{2Y}{6}=\frac{3Z}{12}\)\(=\frac{X+2Y-3Z}{2+6-12}\)\(=5\)
\(=>X=2.5=10\)
\(=>y=3.5=15\)
\(=>z=4.5=20\)
vậy.....
Tìm x; y ; z biết x/10 = y/6 = z/21 và 5x + y - 2z = 28
áp dụng tc dãy tỉ số bằng nhau ta có
x/10=y/6=z/21
=5x/10.5+y/6-z/21.2
=5x+y-z/14
=28/14
=2
=>x/10=2=>x=20
=>y/6=2=>y=12
=>z/21=2=>z=42
vay x=20,y=12,z=42
Ta co : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) va 5x + y - 2z = 28
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\) va 5x + y -2z
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra : \(\frac{5x}{50}=2\Rightarrow x=2.50:5=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{2z}{42}=2\Rightarrow z=2.42:2=42\)
Vậy : \(x=20;y=12;z=42\)
x/10=y/6=z/21 và 5x+y-2z=28 tìm x,y,z
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> 5x = 100 => x = 20
y = 12
2z = 84 => z = 42
tìm giá trị x, ý,z biết
x/10=y/6=z/21 và 5x +y-2z=28
áp dụng tính chất cả dãy tỉ số bằng nhau ta có;
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{5.10+6-2.21}=\frac{28}{14}=2\)
suy ra:
\(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
ta có
\(\frac{x}{10}=\frac{5x}{10.5}=\frac{5x}{50}\)
\(\frac{y}{6}=\frac{y}{6}\)
\(\frac{z}{21}=\frac{2z}{21.2}=\frac{2z}{42}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
*\(\frac{x}{10}=2\Rightarrow x=2.10=20\)
*\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
*\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
vậy x=20;y=12;z=42
Tìm x,y,z thuộc Z
x/10=y/6=z/21 và 5x+y-2z=28
Ta có
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
áp dụng tính chất DTSBN ta có
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(+>\frac{x}{10}=2=>x=20\)
\(+>\frac{y}{6}=2=>y=12\)
\(+>\frac{z}{21}=2=>z=42\)
ti ck nha
#)Giải :
Áp dụng t/chất dãy tỉ số bằng nhau :
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\Rightarrow\hept{\begin{cases}\frac{x}{10}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{z}{21}=2\Rightarrow z=42\end{cases}}\)
Vậy ...
Từ \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có : }\)
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2x}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow x=10.2=20;\)
\(y=2.6=12;\)
\(z=21.2=42\)
Vậy x = 20 ; y = 12 ; z = 42
x phần 10 = y phần 6 = z phần 21 và 5x+y-2z=28
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{10.5+6-2.21}=\frac{28}{14}=2\)
\(\frac{x}{10}=2.10=20\)\(\frac{y}{6}=2.6=12\)\(\frac{z}{21}=2.21=42\)Vậy x=20,y=12,z=42
mk nhé bạn ^...^ ^_^
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=>\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> 5x=50.2=100, y=6.2=12, 2z=42.2=84
=> x=20, y=12, z= 42
Tìm x,y,z biết
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và \(5x+y-2z=28\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> x = 20
y = 12
z = 42
⇔ > X = 20
⇔ > Y = 12
⇔ > Z = 42
Đặt \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=k\)
\(\Rightarrow\hept{\begin{cases}x=10k\\y=6k\\z=21k\end{cases}}\)
Thay vào đẳng thức trên
=> 5x + y - 2z = 50k + 6k - 42k = 14k = 28
=> k = 2
\(\Rightarrow\hept{\begin{cases}x=10k=20\\y=6k=12\\z=21k=42\end{cases}}\)
Tìm các số x,y,z biết:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\left(5x+y-2z=28\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}\)\(\Rightarrow\begin{cases}x=20\\y=12\\z=42\end{cases}\)
Vậy x=20;y=12;z=42