Giải phương trình nghiệm nguyên dương :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{1995}\)
Mỗi ngày 1 bài toán
Giải phương trình nghiệm nguyên dương \(\frac{x+1}{x+y}+\frac{y+1}{y+z}+\frac{z+1}{z+x}=4\)
Ta có : x+1/x+y bé hơn hoặc = 1 <=> gtln = 1 tại y = 1
Tương tự ta có : gtln của VT là 3
Nên pt trên vô nghiệm :))
Chắc sai rồi ạ :D
tìm nghiệm nguyên dương của phương trình
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Do vai trò của \(x,\)\(y,\)\(z\) là như nhau nên giả sử \(z\ge y\ge x\ge1.\)
Ta sẽ thử trực tiếp một vài trường hợp:
\(-\) Nếu \(x=1\) thì \(\frac{1}{y}+\frac{1}{z}=0\) ( vô nghiệm)
\(-\) Nếu \(x=2\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\) \(\Leftrightarrow\)\(2y+2z=yz\) \(\Leftrightarrow\) \(\left(y-2\right)\left(z-2\right)=4\)
Mà \(0\le y-2\le z-2\)và \(4⋮\left(y-2\right),\) \(4⋮\left(z-2\right)\)
Do đó ta có các trường hợp: \(\hept{\begin{cases}y-2=1\rightarrow y=3\\z-2=4\rightarrow z=6\end{cases}}\)
\(\hept{\begin{cases}y-2=2\rightarrow y=4\\z-2=2\rightarrow z=4\end{cases}}\)
\(-\) Nếu \(x=3\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\) + Nếu \(y=3\) thì \(z=3\)
+ Nều \(y\ge4\) thì \(\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
\(\Rightarrow\) phương trình vô nghiệm
\(-\)Nếu \(x=4\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}< 1\) \(\Rightarrow\) phương trình vô nghiệm
Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)
Không mất tính tổng quát ta giả sử
\(x\ge y\ge z>0\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)
\(\Rightarrow1=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}\)
\(\Rightarrow z\le3\)
\(\Rightarrow z=1;2;3\)
*Với z = 1 thì
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=0\)(sai vì x, y nguyên dương)
*Với z = 2 thì
\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Rightarrow y\le4\)
\(\Rightarrow y=1;2;3;4\)
+Với y = 1
\(\Rightarrow\frac{1}{x}=-\frac{1}{2}\)(loại)
+Với y = 2 thì
\(\Rightarrow\frac{1}{x}=0\)(loại)
+Với y = 3 thì
\(\frac{1}{x}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Rightarrow x=6\)
+Với y = 4 thì
\(\frac{1}{x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
\(\Rightarrow x=4\)
*Với z = 3 thì
\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{3}=\frac{2}{3}\)
\(\Rightarrow\frac{2}{3}\le\frac{2}{y}\)
\(\Rightarrow y\le3\)
\(\Rightarrow y=1;2;3\)
+ Với y = 1 thì
\(\frac{1}{x}=\frac{2}{3}-1=-\frac{1}{3}\)(loại)
+ Với y = 2 thì
\(\frac{1}{x}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
\(\Rightarrow x=6\)
+ Với y = 3 thì
\(\frac{1}{x}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
\(\Rightarrow x=3\)
Tới đây thì bạn tự kết luận nhé
Giải phương trình với nghiệm nguyên dương: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)(x;y \(\ne\)0)
<=> \(\frac{x+y}{xy}=\frac{1}{4}\)
<=> 4(x + y) = xy
<=> xy - 4x - 4y =0
<=> x(y - 4) - 4y + 16 = 16
<=> x(y - 4) - 4(y - 4) = 16
<=> (x - 4)(y - 4) = 16
Ta có 16 = 1.16 = 4.4 = (-4).(-4) = (-1).(-16)
Lập bảng xét các trường hợp
x - 4 | 1 | 16 | 4 | -4 | -16 | -1 |
y - 4 | 16 | 1 | 4 | -4 | -1 | -16 |
x | 5 (tm) | 20 (tm) | 8(tm) | 0(loại) | -12(loại) | 3 |
y | 20 (tm) | 5 (tm) | 8 (tm) | 0(loại) | 3 | -12(loại) |
Vây các cặp (x;y) thỏa mãn là (5;20) ; (20;5) ; (8;8)
Giải phương trình nghiệm nguyên: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{1995}\)
Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}+\frac{1}{xy}\)
Ai giải giúp đi
nhân 2 vế với 3xy =>3y+3x=xy+3=>\(\left\{y-3\right\}\left\{x-3\right\}=12\)
=>y-3;x-3 thuộc ước 12={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
Nhân cả hai vế với 3xy (Nhận được vì x , y nguyên dương) ta có:
\(3y+3x=xy+3\Leftrightarrow3y-xy+3x-3=0\)
\(\Leftrightarrow y\left(3-x\right)+3x-9+6=0\Leftrightarrow y\left(3-x\right)-3\left(3-x\right)=-6\)
\(\Leftrightarrow\left(y-3\right)\left(x-3\right)=6\)
Từ đó ta tìm được x ,y.
Chúc em học tốt :)
Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{x}\)+ \(\frac{1}{y}\)= z
Số nào + lại chả được 1 số thuộc Z nhỉ
Đúng 100%
Đúng 100%
Đúng 100%
Giải phương trình nghiệm nguyên dương: \(\frac{5}{x}+\frac{5}{y}=1\)
\(\frac{5}{x}+\frac{5}{y}=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
Vai trò của x,y là bình đẳng,nên ta giả sử \(x\ge y\). Dùng BĐT để giới hạn khoảng giá trị của số nhỏ hơn (y)
Hiển nhiên ta có: \(\frac{1}{y}<\frac{1}{5}\) nên y>5. Mặt khác,do \(x\ge y\ge1\) nên \(\frac{1}{x}\le\frac{1}{y}\). Do đó:
\(\frac{1}{5}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}\).
Mà \(\frac{2}{y}\ge\frac{1}{5}\) nên \(10\ge y\). Vậy \(6\le y\le10\). Ta có:
Với y = 6 thì \(\frac{1}{x\ }=\frac{1}{5}-\frac{1}{6}=\frac{1}{30}\Leftrightarrow x=30\)
Với y = 7 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{7}=\frac{2}{35}\Leftrightarrow x=35\) (loại)
Với y = 8 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{8}=\frac{3}{40}\Leftrightarrow x=40\) (loại)
Với y = 9 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45}\Leftrightarrow x=45\) (loại)
Với y = 10 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{10}=\frac{1}{10}\Leftrightarrow x=10\)
Vậy x=30,y=6. Do vai trò bình đẳng nên ta có thêm 1 giá trị khác: x=6,y=30
và x=10,y=10
:v,mình copy lại mà nó không ra đúng như ý,nên bạn vào đây cho dễ xem vậy: Bài post của Nguyen thi minh ngoc | Bingbe
Giải phương trình nghiệm nguyên dương:
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
b)\(2^x+3^x=5^x\)