một xạ thủ bắn 2 viên vào bia.Xác suất để viên I,II bắn trượt là 0,4;0,3. Tính xác suất các biến cố a)M"có ít nhất 1 viên trúng" b)N"1 viên trúng 1 viên trượt"
Một xạ thủ bắn 3 viên đạn vào bia. Xác suất để 3 viên đạn bắn ra trúng vòng 10 là 0,4. Gọi Xk là biến cố:”trong 3 lần bắn có k viên đạn trúng vòng 10”, k = 1,2,3. Đẳng thức nào sau đây có kết quả sai?
A. P(X0) = 0,216
B. P(X1) = 0,430
C. P(X2) = 0,288
D. P(X3) = 0,064
Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập. Xác suất bắn trúng bia của hai xạ thủ lần lượt là 1 2 và 1 3 . Xác suất để có ít nhất một xạ thủ không bắn trúng bia bằng
A. 1 2
B. 1 6
C. 2 3
D. 5 6
Trong một đợt tập bắn súng có ghi điểm, mỗi xạ thủ được bắn 15 viên. Mỗi viên bắn trúng đích, xạ thủ được ghi 3 điểm, mỗi viên bắn trượt, xạ thủ bị trừ 1điểm. Cuối buổi tập, anh Nam có 33 điểm. Anh Nam bắn bao nhiêu viên trúng đích, bao nhiêu viên bắn trượt?
Nếu bắn trúng tất cả thì số điểm là
15x3=45 điểm
Số điểm bị mất là
45-33=12 điểm
Mỗi viên bắn trượt số điểm mất đi là
3+1=4 điểm
Số viên bắn trượt là
12:4=3 viên
Giả sử tất cả số viên bắn đều trúng thì tổng số điểm anh Nam có là:
3 x 15 = 45 (điểm)
So với đề bài thì thừa ra số điểm là:
45 - 33 = 12(điểm)
Cứ mỗi viên bi bắn trượt thì mất đi số điểm là:
3 + 1 = 4 (điểm)
Số viên bi bắn trượt là:
12 : 4 = 3 (viên bi)
Số viên bi băn trúng là:
15 - 3 = 12 (viên bi)
Đáp số: 12 viên bi băn trúng và 3 viên bi bắn trượt.
Một xạ thủ có 4 viên đạn và bắn từng viên vào bia cho đến khi có 2 viên trúng đích hoặc hết đạn thì dừng lại. Biết xác suất trúng đích của mỗi viên đạn của xạ thủ đó là 0,6. Tìm xác suất để có 2 viên trúng đích
A. p = 0,72.
B. p = 0,7868.
C. p = 0,8208
D. p = 0,9402.
Hai xạ thủ cùng bắn mỗi nhười một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là 1/2 và 1/3
a) Tính xác suất của biến cố X:”cả hai xạ thủ đều bắn trúng bia”
A. 5/6
B. 1/6
C. 2/3
D. 1/3
Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia” i = 1,2.
Khi đó, P(A1) =1/2; P(A2) = 1/3; A1 và A2 độc lập với nhau
X =A1∩ A2 nên P(X) = P(A1∩ A2) = P(A1.A2) = P(A1).P(A2) = 1/6
Chọn đáp án là B
Hai xạ thủ cùng bắn mỗi nhười một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là 1/2 và 1/3
b) Tính xác suất của biến cố Y:”có ít nhất một xạ thủ không bắn trúng bia”
A. 1/2
B. 1/3
C. 1/6
D. 5/6
Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia”, i=1,2
TH1. Xạ thủ thứ nhất bắn trúng, xạ thủ 2 bắn trượt thì xác suất là:
P A 1 = 1 2 . 1 − 1 3
TH2. Xạ thủ thứ nhất bắn trượt, xạ thủ thứ 2 bắn trúng thì xác suất là:
P A 2 = 1 − 1 2 . 1 3
TH3. Cả 2 xạ thủ đều bắn trượt
P A 3 = 1 − 1 2 . 1 − 1 3
Xác suất của biến cố Y là:
P Y = P A 1 + P A 2 + P A 3 = 5 6
Đáp án. D
Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là 1 2 và 1 3 . Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia
A. 1 3
B. 1 6
C. 1 2
D. 2 3
Đáp án D
Phương pháp:
A, B là các biến cố độc lập thì P ( A . B ) = P ( A ) . P ( B )
Chia bài toán thành các trường hợp:
- Một người bắn trúng và một người bắn không trúng,
- Cả hai người cùng bắn không trúng.
Sau đó áp dụng quy tắc cộng.
Cách giải:
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 2 = 1 2 .
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 3 = 2 3 .
Gọi biến cố A:”Có ít nhất một xạ thủ không bắn trúng bia ”.
Khi đó biến cố A có 3 khả năng xảy ra:
+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: 1 2 . 2 3 = 1 3 .
+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: 1 2 . 1 3 = 1 6 .
+) Xác suất cả hai người đều bắn không trúng bia:
Khi đó P ( A ) = 1 2 . 2 3 + 1 2 . 1 3 + 1 2 . 1 3 = 2 3 .
Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là 1 2 và 1 3 . Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.
Đáp án D
Phương pháp:
A, B là các biến cố độc lập thì P(A.B) = P(A).P(B)
Chia bài toán thành các trường hợp:
- Một người bắn trúng và một người bắn không trúng,
- Cả hai người cùng bắn không trúng.
Sau đó áp dụng quy tắc cộng.
Cách giải:
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - 1 2 = 1 2
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - 1 3 = 2 3
Gọi biến cố A:”Có ít nhất một xạ thủ không bắn trúng bia ”.
Khi đó biến cố A có 3 khả năng xảy ra:
+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: 1 2 . 2 3 = 1 3
+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: 1 2 . 1 3 = 1 6
+) Xác suất cả hai người đều bắn không trúng bia:
Khi đó
Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một các độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là 12 và 13. Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.
A. 1 2
B. 1 3
C. 5 6
D. 2 3
Một xạ thủ bắn 30 viên đạn, biết bắn trúng đích được cộng 10 điểm, bắn trượt đích bị trừ 10 điểm. Hỏi xạ thủ đã bắn trúng đích bn lần?
Có bạn nào biết làm thì giúp mình với. Cảm ơn