3x+1 + 3x+2 - 2 x 3x = 270
3x+1+3x+2-2x3x=270 tìm x
3x+1 + 3x+2 - 2 x 3x = 270
3x ( 3 + 32 - 2) = 270
3x . 10 = 270
3x = 270 : 10
3x = 27
3x = 33
x = 3
\(3^{x+1}+3^{x+2}-2.3^x=270\)
\(\Leftrightarrow3.3^x+3^2.3^x-2.3^x=270\)
\(\Leftrightarrow\left(3+3^2-2\right).3^x=270\)
\(\Leftrightarrow10.3^x=270\)
\(\Leftrightarrow3^x=27\)
\(\Leftrightarrow3^x=3^3\)
\(\Leftrightarrow x=3\)
Tìm x biết
a) 2x - 24.27.32 = 0.
b) b) 3x + 3x+2 = 270.
c) 6 ⁝ x+1
a.\(2^x-2^4.2^7.32=0\)
\(2^x-2^{16}=0\)
\(=>x=16\)
b.\(3^x+3^{x+2}=270\)
\(3^x+3^x.3^2=270\)
\(3^x.10=270\)
\(3^x=27\)
\(=>x=3\)
3x+4+3x+2=270
\(3^{x+4}+3^{x+2}=270\)
\(\Leftrightarrow3^x\cdot90=270\)
hay x=1
\(3^{x+2}.3^2+3^{x+2}=270\)
\(3^{x+2}\left(3^2+1\right)=270\)
\(3^{x+2}.10=270\)
\(3^{x+2}=27\)
⇒x+2=3
⇒x=1
Đa thức P(x) = \(243^5-405^4+270^3-90^2+15x-1\) là khai triển của nhị thức nào dưới đây ?
A. \(\left(1-3x\right)^5\)
B. \(\left(1+3x\right)^5\)
C. \(\left(x-1\right)^5\)
D.\(\left(3x-1\right)^5\)
giải chi tiết giúp em luôn nhé
tìm x
x2-3x-270=0
x2-3x-270=0
<=> x^2 - 18x + 15x - 270 = 0
<=> x(x - 18) + 15(x - 18) = 0
<=> (x + 15)(x - 18) = 0
<=> x = - 15 hoặc x = 18
vậy_
kết bạn nhé ^^
\(x^2 -3x-270=0\)
\(\Leftrightarrow\)\(( x^2 -18x) + ( 15x-270)=0\)
\(\Leftrightarrow\)\(x. (x-18)+15. (x-18)=0\)
\(\Leftrightarrow\)\((x-18)(x+15)=0\)
\(\Rightarrow\)\(x =18\) hoặc \(x=-15\)
x2 -3x-270=0
<=> x2 - 18x + 15x - 270 = 0
<=> x(x - 18) + 15(x - 18) = 0
<=> (x + 15)(x - 18) = 0
<=> x = - 15 hoặc x = 18
Vậy......................................
Tìm x
3x + 3x + 2 = 270
\(\Leftrightarrow3^x=27\)
hay x=3
\(\Leftrightarrow3^x+3^x.3^2=270\Leftrightarrow3^x.10=270\\\Leftrightarrow3^x=3^3\Leftrightarrow x=3\)
Cho R(x) = 2x 2 + 3x - 1; M(x) = x 2 - x 3 thì R(x) - M(x)=
A.-3x 3 + x 2 + 3x – 1 B. -3x 3 - x 2 + 3x – 1
B. 3x 3 - x 2 + 3x – 1 D. x 3 + x 2 + 3x + 1
R(x) = 2x2 + 3x - 1
- M(x) = -x3 + x2
x3 + x2 + 3x - 1
Vậy R(x) - M(x) = x3 + x2 + 3x - 1
tính
\(\dfrac{x^2+38x+4}{2x^2+17x+1}-\dfrac{3x^2-4x-2}{2x^2+17x+1}\)
\(\dfrac{3x+1}{3x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
\(\dfrac{-x}{3x-2}+\dfrac{7x-4}{3x-2}\)
a) Ta có: \(\dfrac{x^2+38x+4}{2x^2+17x+1}-\dfrac{3x^2-4x-2}{2x^2+17x+1}\)
\(=\dfrac{x^2+38x+4-3x^2+4x+2}{2x^2+17x+1}\)
\(=\dfrac{-2x^2+42x+6}{2x^2+17x+1}\)
c) Ta có: \(C=\dfrac{-x}{3x-2}+\dfrac{7x-4}{3x-2}\)
\(=\dfrac{-x+7x-4}{3x-2}\)
\(=\dfrac{6x-4}{3x-2}=2\)
Rút gọn các biểu thức sau:
a,(3x+1)^2-2(3x+1)(3x-5)+(3x-5)^2
b,(3x^2-y)^2
c,(3x+5)^2+(3x-5)^2-(3x+2)(3x-2)
d,2x(2x-1)^2-3x(x+3)(Õ-3)-4x(x+1)^2
e,(x-2)(x^2+2x+4)-(x+1)^2+3(x-1)(x+1)
f,(x^4-5x^2+25)(x^2+5)-(2+x^2)^2+3(1+x^2)^2
a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2
= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25
= 36
b) (3x^2 - y)^2
= 9x^4 - 6x^2y + y^2
c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)
= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4
= 9x^2 + 54
d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2
= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x
= x^3 - 16x^2 + 25x
e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)
= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2
= x^3 + 2x^2 - 2x - 12
f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2
= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4
= x^6 + 2x^4 + 2x^2 + 124
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35