Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vy Yến
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 7 2017 lúc 4:34

c) Để phương trình (1) có hai nghiệm x1 và x2 ⇔ Δ' ≥ 0 ⇔ 4 - m ≥ 0 ⇔ m ≤ 4

Theo Vi-et ta có: Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có: x 1 2 + x 2 2  = 10 ⇔ x 1 + x 2 2 - 2x1x2 = 10

⇔ - 4 2 - 2m = 10 ⇔ 16 - 2m = 10 ⇔ m = 3 (TM)

Vậy với m = 3 thì phương trình (1) có hai nghiệm thõa mãn:  x 1 2 + x 2 2  = 10

Fujika Midori
Xem chi tiết
Gia Huy
5 tháng 7 2023 lúc 7:49

\(\Delta=\left(m+1\right)^2-4.1.2=\left(m+1\right)^2-8\)

Để PT có 2 nghiệm thì:

\(\Delta\ge0\Leftrightarrow\left(m+1\right)^2-8\ge0\\ \Leftrightarrow\left(m+1\right)^2\ge8\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=-\left(m+1\right)\\x_1x_2=2\end{matrix}\right.\)

\(x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2.2=\left(m+1\right)^2-4\)

Mà \(\left(m+1\right)^2\ge8\) nên \(\left(m+1\right)^2-4\ge4\)

\(\Rightarrow min_{x_1^2+x_2^2}=4\) (dấu bằng xảy ra)

\(\Leftrightarrow\left(m+1\right)^2=8\)

\(\Leftrightarrow m^2+2m+1=8\\\Leftrightarrow m^2+2m-7=0 \)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

Fujika Midori
Xem chi tiết
Gia Huy
5 tháng 7 2023 lúc 8:07

Bổ sung thêm điều kiện đề với \(m\ne1\) nữa nhé: )

Nhẩm nghiệm: \(a-b+c=0\) \(\left(m-1-m-1+2=0\right)\)

\(\Rightarrow\) PT có 2 nghiệm \(x_1=-1;x_2=\dfrac{2}{m-1}\)

Nếu \(x_1^2-x_2^2=3\):

\(\left(-1\right)^2-\left(\dfrac{2}{m-1}\right)^2=3\)

=> Không có giá trị m thỏa mãn.

Nếu \(x_1^2-x_2^2=-3\):

\(\left(-1\right)^2-\left(\dfrac{2}{m-1}\right)^2=-3\\ \Rightarrow m=2\left(TM\right)\)

tên gì cũng được
Xem chi tiết

a) Khi m = -5 ta được phương trình x2 + 4x - 5 = 0

Ta có a + b + c = 1 + 4 + (-5) = 0 nên phương trình có hai nghiệm phân biệt là x1 = 1; x2= c/a = (-5)/1 = -5

Tập nghiệm của phương trình S = {1; -5}

b) Δ' = 22 - m = 4 - m

Phương trình có nghiệm kép ⇔ Δ'= 0 ⇔ 4 - m = 0 ⇔ m = 4

c) Để phương trình (1) có hai nghiệm x1 và x2 ⇔ Δ' ≥ 0 ⇔ 4 - m ≥ 0 ⇔ m ≤ 4

Theo Vi-et ta có: Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có: x12 + x22 = 10 ⇔ (x1 + x2)2 - 2x1x2 = 10

⇔ (-4)2 - 2m = 10 ⇔ 16 - 2m = 10 ⇔ m = 3 (TM)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 6 2018 lúc 11:07

Đáp án A

hằng
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2021 lúc 23:48

\(\Delta'=m^2+2m+6=\left(m+1\right)^2+5>0\) ;\(\forall m\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-2m-6\end{matrix}\right.\)

Đặt \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(P=\left(-2m\right)^2-2\left(-2m-6\right)=4m^2+4m+12\)

\(P=\left(2m+1\right)^2+11\ge11\)

\(P_{min}=11\) khi \(m=-\dfrac{1}{2}\)

Hiep Nguyen
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2023 lúc 19:49

a. Em tự giải

b.

\(\Delta'=\left(m-1\right)^2-\left(m^2-6\right)=-2m+7\)

Pt đã cho có 2 nghiệm khi: \(-2m+7\ge0\Rightarrow m\le\dfrac{7}{2}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-6\end{matrix}\right.\)

\(x_1^2+x_2^2=16\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)

\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-6\right)=16\)

\(\Leftrightarrow2m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=4>\dfrac{7}{2}\left(loại\right)\end{matrix}\right.\)

Vậy \(m=0\)

Limited Edition
Xem chi tiết
Akai Haruma
17 tháng 3 2021 lúc 18:04

Lời giải:

Để PT có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2-1)>0\Leftrightarrow 2m+2>0\Leftrightarrow m>-1$

Áp dụng định lý Viet:

$x_1+x_2=2(m+1)$ và $x_1x_2=m^2-1$

Khi đó, để $x_1^2+x_2^2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+8$

$\Leftrightarrow 4(m+1)^2=3(m^2-1)+8$

$\Leftrightarrow m^2+8m-1=0$

$\Leftrightarrow m=-4\pm \sqrt{17}$. Vì $m>-1$ nên $m=-4+\sqrt{17}$