tìm x: x^2-6x=-10
Tìm x
\(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+8}+\sqrt{x^2-6x+12}=4+\sqrt{3}\)
Tìm x:
\(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+18}+\sqrt{x^2-6x+12}=4+\sqrt{3}\)
Tìm x
a)3x2-6x=0
b)x.(x-6)+10(x-6)=0
c) (x+2)2 =x+2
a, \(\Leftrightarrow3x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy ...
b, \(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
Vậy ...
c, \(\Leftrightarrow\left(x+2\right)^2-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy ...
\(a.\)
\(3x^2-6x=0\)
\(\Leftrightarrow3x\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b.\)
\(x\cdot\left(x-6\right)+10\cdot\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\cdot\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
\(c.\)
\(\left(x+2\right)^2=x+2\)
\(\Leftrightarrow x^2+4x+4-x-2=0\)
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Tìm GTNN của
Q=2x^2-6x
M=x^2 +y^2-x+6x +10
\(Q=2x^2-6x\)
\(=2\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\forall x\)
Dấu"=" xảy ra<=>\(2\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
\(M=x^2+y^2-x+6x+10\)
\(=x^2+y^2+5x+10\)
\(=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+10+y^2\)
\(=\left(x+\frac{5}{2}\right)^2+y^2+\frac{15}{4}\)
Vì \(\hept{\begin{cases}\left(x+\frac{5}{2}\right)^2\ge0;\forall x,y\\y^2\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow\left(x+\frac{5}{2}\right)^2+y^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+\frac{5}{2}\right)^2+y^2+\frac{15}{4}\ge0+\frac{15}{4};\forall x,y\)
Hay \(M\ge\frac{15}{4};\forall x,y\)
Dấu =" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{5}{2}\right)^2=0\\y^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{2}\\y=0\end{cases}}\)
Vậy MIN \(M=\frac{15}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{2}\\y=0\end{cases}}\)
Tìm x để f(x)=x^2-6x+10=0
\(x^2-6x+10x=x^2-3x-3x+9+1=x\left(x-3\right)-3\left(x-3\right)+1=\left(x-3\right)\left(x-3\right)+1=\left(x-3\right)^2+1\)
mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\)
Vậy không tìm được x thỏa mãn yêu cầu đề.
Tìm x, y biết: \(x^2+4y^2-6x+4y+10=0\)
Dễ mà :vv
Ta có: \(x^2+4y^2-6x+4y+10=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)
Đến đây tự giải...
<=> x^2-6x+9+4y^2+4y+1=0
<=> x^2-2.3.x+3^2+(2y)^2+2.2y.1+1=0
<=>(x-3)^2+(2y+1)^2=0
<=> x-3=0 và 2y+1=0
<=> x=3 và y=-1/2
Tìm mẫu thức chung của hai phân thức\(\frac{x+1}{x^2+2x-3}\)và\(\frac{-2x}{x^2+7x+10}\)là:
A.\(x^3+6x^2+3x+10\)
B.\(x^3-6x^2+3x-10\)
C.\(x^3+6x^2-3x-10\)
D.\(x^3+6x^2+3x+10\)
Giải hộ mình vs
\(\text{A.}\)\(\text{x3+6x2+3x−10}\)
5x-(x+2)=-6x+10
tìm x
5x - (x + 2) = -6x + 10
=> 5x - x - 2 = -6x + 10
=> 4x + 6x = 10 + 2
=> 10x = 12
=> x = 12:10
=> x = 1,2
X = 4 PHẢI KO BẠN NHỈ
NẾU ĐÚNG CHO MK LI-KE NHA !
tìm GTNN của B= x^4-2xy(x^2-4y) + x^2 - 6x+10
các anh chị pro toán giúp em