Tìm 2 số hữu tỉ x và y biết:
1,5x + 2,25y= 0 và 2x+5y= -11
Tìm các số hữu tỉ x,y,z biết
a) x/4=y/-6=z/5 và x+y-z=-14
b) 2x +3y-z=24 và x/4=y/3=z/5
c)x/11=y/12; y/3=z/7 và 2x-y+z=152
d) 3x=5y=6z và 2x+y-3z=33
bn nào tl mk mang ơn suốt đời
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm ba số x, y, z tỉ lệ với 2, 3, 4 và 2x-5y+3z+11
Theo bài ra ta có \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4};2x-5y+3z=11\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x-5y+3z}{4-15+12}=11\Rightarrow x=22;y=33;z=44\)
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Tìm các số hữu tỉ x, y, z biết: (2x-3y)/13=(2y-7z)/17=(3-4z)/11 và 2x+y-2z=23
Tìm các số hữu tỉ x,y thỏa mãn điều kiện:
6x-14/13=5y+9/11 và 3x-2y=19
6x - 14 / 13 = 5y + 9 / 11 => ( 6x - 14 ) . 11 = ( 5y + 9 ) . 13
=> 66x - 154 = 65y + 117
=> 66x - 65y = 154 + 117
=> 66x - 65y = 271
Ta có \(\frac{6x-14}{13}=\frac{5y+9}{11}\)
=> \(11\left(6x-14\right)=13\left(5y+9\right)\)
=> \(66x-154=65y+117\)
=> \(66x-65y=117+154\)
=> \(66x-65y=271\)(1)
và \(3x-2y=19\)(2)
Trừ (1) với (2), ta có:
\(63x-63y=252\)
=> \(63\left(x-y\right)=252\)
=> \(x-y=\frac{252}{63}\)
=> \(x-y=4\)
=> x = 4 + y (3)
Thế (3) vào (2), ta có:
\(3\left(4+y\right)-2y=19\)
=> \(12+3y-2y=19\)
=> \(12+y=19\)
=> \(y=7\)
=> \(x=4+7=11\)
Vậy \(\hept{\begin{cases}x=11\\y=7\end{cases}}\)thì thoả mãn điều kiện \(\hept{\begin{cases}\frac{6x-14}{13}=\frac{5y+9}{11}\\3x-2y=19\end{cases}}\).
Tìm 2 số hữu tỉ x và y biết x+y=x.y=x:y và y khác 0
Ta có:x+y=xy=>x=xy-y=>x=y(x-1)=>x:y=x-1 (1)
Mà x:y=x+y (2)
Từ (1) và (2) ta suy ra:y=-1
nên x=\(\frac{1}{2}\)
xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = 1212
thay vào thấy thỏa mãn
Vậy x = 1212 và y = -1
Tìm hai số x,y biết x,y tỉ lệ nghịch với 4,6 và 2x - 5y = 20
tìm 2 số hữu tỉ x và y( y khác 0) biết : x-y=x.y=x:y
a) tìm hai số x và y biết 4x = 5y và y - 2x = -5
b) tìm ba số a, b, c biết a, b, c tỉ lệ với 2, 3, 4 và a + 2b - 3c = -20
a)Ta có : \(4x=5y=>\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{y-2x}{4-10}=\frac{-5}{-6}=\frac{5}{6}\)
Từ \(\frac{x}{5}=\frac{5}{6}=>x=\frac{25}{6}\)
Từ \(\frac{y}{4}=\frac{5}{6}=>y=\frac{10}{3}\)