Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Trung Anh
Xem chi tiết
Huỳnh Mai Phương
Xem chi tiết
ST
7 tháng 5 2017 lúc 21:19

a, Ta có: \(\frac{2001}{2002}=\frac{2002-1}{2002}=\frac{2002}{2002}-\frac{1}{2002}=1-\frac{1}{2002}\)

\(\frac{2000}{2001}=\frac{2001-1}{2001}=\frac{2001}{2001}-\frac{1}{2001}=1-\frac{1}{2001}\)

Vì \(\frac{1}{2002}< \frac{1}{2001}\Rightarrow1-\frac{1}{2002}>1-\frac{1}{2001}\Rightarrow\frac{2001}{2002}>\frac{2000}{2001}\)

b, Ta có: \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)^7=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)

\(\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{30}}\)

Vì \(\frac{1}{3^{28}}>\frac{1}{3^{30}}\Rightarrow\left(\frac{1}{81}\right)^7>\left(\frac{1}{243}\right)^6\Rightarrow\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^6\)

c, Ta có: \(\left(\frac{3}{8}\right)^5=\frac{3^5}{\left(2^3\right)^5}=\frac{243}{2^{15}}>\frac{243}{3^{15}}>\frac{125}{3^{15}}=\frac{5^3}{\left(3^5\right)^3}=\frac{5^3}{243^3}=\left(\frac{5}{243}\right)^3\)

Vậy \(\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)

d, Ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)

\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)

e, \(C=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

\(D=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)

Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\Rightarrow C< D\)

g, \(G=\frac{10^{100}+2}{10^{100}-1}=\frac{10^{100}-1+3}{10^{100}-1}=\frac{10^{100}-1}{10^{100}-1}+\frac{3}{10^{100}-1}=1+\frac{3}{10^{100}-1}\)

\(H=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì \(\frac{3}{10^{100}-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^{100}-1}< 1+\frac{3}{10^8-3}\Rightarrow G< H\)

h, Vì E < 1 nên:

\(E=\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=F\)

Vậy E = F

Hòa Đình
Xem chi tiết
Hòa Đình
Xem chi tiết
Nguyễn Thanh Hằng
17 tháng 9 2017 lúc 14:42

Áp dụng tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ta có :

\(B=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{98}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}=A\)

\(\Leftrightarrow B>A\)

Hải Đăng
17 tháng 9 2017 lúc 14:48

Ta áp dụng tính chất :

\(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ta có:

\(B=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{89}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}=A\)

\(\Leftrightarrow B>A\)

Chúc bạn học tốt!

Name
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 20:17

Sửa đề: B=11^87+1/11^88+1

\(11A=\dfrac{11^{90}+11}{11^{90}+1}=1+\dfrac{10}{11^{90}+1}\)

\(11B=\dfrac{11^{88}+11}{11^{88}+1}=1+\dfrac{10}{11^{88}+1}\)

mà 11^90>11^88

nên A<B

Trần Khánh Chi
Xem chi tiết
Jaki Nastumi
25 tháng 2 2018 lúc 20:14

 D lớn hơn C nhiều lắm

Trần Khánh Chi
25 tháng 2 2018 lúc 22:02

Bạn giải được không ?

Trần Khánh Chi
25 tháng 2 2018 lúc 22:03

Mình cần cách giải thôi

Gió Độc
Xem chi tiết
Đăng Vương
Xem chi tiết
Hà Minh Long
Xem chi tiết
Hà Minh Long
8 tháng 2 2022 lúc 15:52

giải chi tiết giúp mình nhé

Khách vãng lai đã xóa