cho hình bình hành abcd có hai đường chéo cắt nhau tại o phân giác góc bad cắt bd tại e.phân giác cda cắt ac tại f
a/ cmr de/eb=af/fc
b/ cmr de/oe=af/fc,từ đó suy ra ef//bc
1,cho hình bình hành ABCD có o là giao của hai đường chéo trên đường chéo ac lấy AE=AF=FC
a,BEDF là hình bình hành
b,DF cắt BC tại M Chứng minh DF =2FM
c,BF cắt DC tại I và DE cắt AB tại J CMR 3 điểm IOJ thẳng hàng
2,Cho hình bình hành ABCD Có A=120 Tia phân giác góc D qua trung điểm I Của AB Kẻ AH vuông góc CD
CMR a,AI=2BH
b,DI=2AH
c,AC vuông góc AD
Bài 1:
a: OE+EA=OA
OF+FC=OC
mà EA=FC; OA=OC
nên OE=OF
=>O là trung điểm của EF
Xét tứ giác BEDF có
O là trung điểm chung của BD và EF
=>BEDF là hình bình hành
b: Xét ΔBEC co FM//EB
nên FM/EB=CF/CE=1/2
=>DF=2FM
c: Xét tứ giác BJDI có
BJ//DI
BI//DJ
=>BJDI là hình bình hành
=>BD cắt IJ tại trung điểm của mỗi đường
=>O là trung điểm của JI
Cho hình bình hành ABCD. Đường phân giác góc A cắt BD tại E, đường phân giác góc B cắt AC tại F. Chứng minh:
a) \(\dfrac{BE}{ED}=\dfrac{AF}{FC}\)
b) EF//AB
Lời giải:
a) Theo tính chất đường phân giác ta có:
$\frac{BE}{ED}=\frac{AB}{AD}$
$\frac{AF}{FC}=\frac{AB}{BC}$
Mà $ABCD$ là hình bình hành nên $AD=BC\Rightarrow \frac{AB}{AD}=\frac{AB}{BC}$
$\Rightarrow \frac{BE}{ED}=\frac{AF}{FC}$ (đpcm)
b) Gọi O là giao điểm $AC,BD$. Ta có:
\(\frac{BE}{ED}=\frac{BD-ED}{ED}=\frac{2DO-ED}{ED}=\frac{2DO}{ED}-1\)
Tương tự: \(\frac{AF}{FC}=\frac{2OC}{FC}-1\)
Mà \(\frac{BE}{ED}=\frac{AF}{FC}\Rightarrow \frac{DO}{ED}=\frac{OC}{FC}\). Theo định lý Talet đảo suy ra $EF\parallel DC$ hay $EF\parallel AB$ (đpcm)
cho hình bình hành ABCD, 2 đường cắt chép nhau tại O. Trên đường chéo AC lấy E và F sao cho AE=EF=FC
a) CMR: Tứ giác BEDF là hình bình hành
b)DF cắt BC tại M CMR: FM=1/2DF
c) DE cắt AB tại Q; BF cắt DC tại I CMR: BQDI là HBH và 3 điểm I, Q, O thẳng hàng
giúp với cần gấp
a: Xét tứ giác BEDF có
O là trung điểm của FE
O là trung điểm của BD
Do đó: BEDF là hình bình hành
cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E, F sao cho AF= EF= FC
a) C/m : BEDF là hình bình hành
b) DF cắt BC tại M. C/m : DF= 2FM
c) BF cắt DC tại I, DE cắt AB tại I. C/m : O, I, J thẳng hàng ( O là giao điểm của hai đường chéo )
Cho hình bình hành ABCD có O là giao điểm 2 đường chéo. Trên đường chéo AC lấy 2 điểm E, F sao cho AE = EF = FC.
a/ CMR : BEDF là hình bình hành
b/ DE cắt BC tại N. CM : DF = 2FN
c/ BF cắt DC tại I và BE cắt AB tại J. CMR : I, O, J thẳng hàng
Cho hình bình hành ABCD có AB=2.BC. Gọi E, F lần lượt là trung điểm của AB, CD
a) Chứng minh tứ giác DEBF là hình bình hành; tứ giác AEFD là hình thoi
b) Cho DE cắt AF tại M, CE cắt BF tại N. C/m EF, MN, AC đồng quy
c) Tìm điều kiện của tứ giác ABCD để EMFN là hình vuông
d) Cho S ABCD=S . Tính S EMFN theo S
a: Xét tứ giác DEBF có
FD//BE
FD=BE
Do đó: DEBF là hình bình hành
Cho hình bình hành ABCD có AB=2.BC. Gọi E, F lần lượt là trung điểm của AB, CD
a) Chứng minh tứ giác DEBF là hình bình hành; tứ giác AEFD là hình thoi
b) Cho DE cắt AF tại M, CE cắt BF tại N. C/m EF, MN, AC đồng quy
c) Tìm điều kiện của tứ giác ABCD để EMFN là hình vuông
d) Cho S ABCD=S . Tính S EMFN theo S
Cho hình bình hành ABCD.Đường phân giác góc A cắt BD tại E, đường phân giác góc B cắt AC tại F
a)BE/ED=AF/FC
b)EF//AB
cho hcn ABCD 2 đường chéo AC và BD cắt nhau tại O.Qua D kẻ đường thẳng vuông góc với BD tại D và cắt đường thẳng BC tại E
a,CM tam giác BDE đồng dạng với tam giác DCE
b,kẻ CH vuông góc với DE tại H .CMR DC bình =CH.DB
c,CM ba đường OE,CD,BH đồng quy tại O
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHCD vuông tại H và ΔDEB vuông tại D có
góc HCD=góc DEB
=>ΔHCD đồng dạng với ΔDEB
=>DH/DB=CH/DE
=>DH*DE=DB*CH
=>DB*CH=DC^2