Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mộc Miên
Xem chi tiết
Mộc Miên
Xem chi tiết
Trang Nana
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2020 lúc 9:57

1.

\(\frac{x^2+2x+5}{x+4}-\left(x-3\right)\ge0\)

\(\Leftrightarrow\frac{x^2+2x+5-\left(x-3\right)\left(x+4\right)}{x+4}\ge0\)

\(\Leftrightarrow\frac{x+17}{x+4}\ge0\Rightarrow\left[{}\begin{matrix}x>-4\\x\le-12\end{matrix}\right.\)

2.

\(\frac{x^2-3x-1}{2-x}+x>0\)

\(\Leftrightarrow\frac{x^2-3x-1+x\left(2-x\right)}{2-x}>0\)

\(\Leftrightarrow\frac{-x-1}{2-x}>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)

3.

\(\frac{3x-47}{3x-1}-\frac{4x-47}{2x-1}>0\)

\(\Leftrightarrow\frac{\left(3x-47\right)\left(2x-1\right)-\left(4x-47\right)\left(3x-1\right)}{\left(3x-1\right)\left(2x-1\right)}>0\)

\(\Leftrightarrow\frac{-6x\left(x-8\right)}{\left(3x-1\right)\left(2x-1\right)}>0\Rightarrow\left[{}\begin{matrix}0< x< \frac{1}{3}\\\frac{1}{2}< x< 8\end{matrix}\right.\)

Nguyễn Việt Lâm
21 tháng 4 2020 lúc 10:01

4.

\(\frac{x\left(x+2\right)+9}{x+2}-4\ge0\)

\(\Leftrightarrow\frac{x^2+2x+9-4\left(x+2\right)}{x+2}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x+2}\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{x+2}\ge0\Rightarrow x>-2\)

5.

\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\Rightarrow\left[{}\begin{matrix}x\le-6\\1\le x< 2\\2< x< 7\\x=-2\end{matrix}\right.\)

6. Xem lại đề

Mai Linh
Xem chi tiết
Thảo Phương
21 tháng 6 2019 lúc 9:36

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)

\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)

\(B=3-\sqrt{x}-\sqrt{x}+3-6\)

\(B=-2\sqrt{x}\)

Thảo Phương
21 tháng 6 2019 lúc 9:24

\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3}{\sqrt{x}-6}\)

Đinh Diệp
Xem chi tiết
Minh Khánh
7 tháng 11 2019 lúc 20:41

a) \(P=\left(\frac{2\sqrt{2}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right).\left(\sqrt{x}+1\right)}\)

\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-3}{\sqrt{x}+3}\)

Khách vãng lai đã xóa
Đinh Diệp
Xem chi tiết
Nguyễn Thị Mỹ Anh
Xem chi tiết
nam mai
Xem chi tiết
Tran Le Khanh Linh
26 tháng 2 2020 lúc 9:17

\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\left(x\ne1\right)\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x}{x^2+x+1}=0\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\left(x^2+x+1-3x^2-2x^2+2x\right)=0\)

\(\Leftrightarrow-4x^2+3x+1=0\left(\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\ne0\right)\)

\(\Leftrightarrow-4x^2+4x-x+1=0\)

\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\-4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\-4x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\left(loại\right)\\x=\frac{-1}{4}\end{cases}}}\)

Vậy \(x=\frac{-1}{4}\)

Khách vãng lai đã xóa
hoangkunvai
Xem chi tiết
Thanh Tùng DZ
27 tháng 4 2020 lúc 9:44

gọi A là VT

Ta có : \(A=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)

Áp dụng BĐT Cô-si,ta có :

\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\Rightarrow\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\ge0\)

\(\frac{x^{16}+y^{16}}{4}\ge\frac{x^8y^8}{2}=\left(\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)-\frac{3}{2}\ge4\sqrt[4]{\frac{x^8y^8}{16}}-\frac{3}{2}==2x^2y^2-\frac{3}{2}\)

\(\Rightarrow\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\ge\frac{-3}{2}\)

Từ đó ta có : \(A\ge0-\frac{3}{2}-1=\frac{-5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x^2y^2=1\end{cases}\Leftrightarrow x=y=\pm1}\)

Khách vãng lai đã xóa