Những câu hỏi liên quan
Blue Moon
Xem chi tiết
Kiệt Nguyễn
10 tháng 8 2020 lúc 22:11

Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\)thì ta có \(xy+yz+zx+xyz=4\)

Bất đẳng thức cần chứng minh trở thành: \(x^2+y^2+z^2+5xyz\ge4\)

Đặt \(x+y+z=p;xy+yz+zx=q;xyz=r\)thì \(q+r=4\)và ta cần chứng minh \(p^2-2q+5r\ge8\)

\(\Leftrightarrow p^2-2q+5\left(r-4\right)+12\ge0\Leftrightarrow p^2-7q+12\ge0\)

*) Nếu \(4\ge p\)thì theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\Leftrightarrow4\ge q+\frac{p\left(4q-p^2\right)}{9}\)

\(\Leftrightarrow q\le\frac{p^3+36}{4p+9}\)

Nên ta cần chỉ ra rằng \(p^2-\frac{7\left(p^3+6\right)}{4p+9}+12\ge0\Leftrightarrow\left(p-3\right)\left(p^2-6\right)\le0\)*đúng vì \(4\ge p\ge\sqrt{3q}\ge3\)*

*) Nếu \(p\ge4\)thì \(p^2\ge16\ge4q\Rightarrow p^2-2q+5r\ge p^2-2q\ge\frac{p^2}{2}\ge8\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = 1 hoặc \(\left(x,y,z\right)=\left(2,2,0\right)\)và các hoán vị

Khách vãng lai đã xóa
tth_new
11 tháng 8 2020 lúc 20:00

Tuyệt quá,

Bất đẳng thức \(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(c+a\right)^2}+\frac{c^2}{\left(a+b\right)^2}+\frac{kabc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}+\frac{1}{8}k\)

có hằng số k tốt nhất là 10.

Tức là bài toán này đúng với mọi \(k\le10\)!

Khách vãng lai đã xóa
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
18 tháng 2 2022 lúc 10:02

Ta có:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)

\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)

Tương tự ta được:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)

\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)

Vậy ta cần chứng minh:

\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)

Ta viết lại bất đẳng thức trên thành:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
lam1221
10 tháng 7 2021 lúc 12:24

đăng thể hiện mình giỏi hả nhóc, lô ga rít lớp 9 đã hc à, 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
10 tháng 7 2021 lúc 12:31
hông biết nhét lớp nào nhét tạm 9 =))
Khách vãng lai đã xóa
lam1221
10 tháng 7 2021 lúc 12:34

ối giồi ôi lun, lo ga rít lớp mấy cx ko bít, bv:

Khách vãng lai đã xóa
hoài phan
Xem chi tiết
Thắng Nguyễn
5 tháng 3 2018 lúc 18:15

Đặt \(A=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(b-c\right)\left(a-b\right)}=-1\)

\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)^2\ge0\)

\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2+2A\ge0\)

\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge2\)

hoài phan
4 tháng 3 2018 lúc 23:38

\(\ge2\)

Thắng Nguyễn
5 tháng 3 2018 lúc 18:16

chúc bn học tốt nhớ tích và kb với mk nha ^^

huong dan
Xem chi tiết
Nguyen Thi Bich Huong
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2020 lúc 15:54

Điều kiện là các số đôi một khác nhau:

Đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\) BĐT trở thành:

\(\frac{x^2}{\left(y-z\right)^2}+\frac{y^2}{\left(z-x\right)^2}+\frac{z^2}{\left(x-y\right)^2}\ge2\)

Bạn tham khảo ở đây:

Câu hỏi của tư mã chiêu - Toán lớp 9 | Học trực tuyến

Khách vãng lai đã xóa
Nguyễn Thùy Linh
Xem chi tiết
NONAME
Xem chi tiết
pham thi thu trang
Xem chi tiết