1x3+2x3^2+3x3^3+...+2022x3^2022+2023x3^2023
tính :1x3 + 2x3 + 3x3 + 4x3 + ....+ 50x3
1x3 + 2x3 + 3x3 + 4x3 + ....+ 50x3
=(1+2+3+4+...+50)x3
=1275x3
=3825
đúng nha
2023x3+2023+2023x6=?ai nhanh;đúng mình tik cho!
2023 x 3 + 2023 + 2023 x 6
= 2023 x 3 + 2023 x 1 + 2023 x 6
= 2023 x ( 3 + 1 + 6)
= 2023 x 10
= 20230
2023*3+2023+2023*6
= 2023*3+2023*1+2023*6
=2023*[3+1+6]
=2023*10
=20230
Phân tích đa thức thành nhân tử:
x4 + 2023x3 + 2022x + 2023
so sánh A = 2022^2023 + 3/2022^2022 - 1 và B = 2022^2023 - 2019/2022^2022 - 2
A= 2023^2022+2/2023^2022-1 và B=2023^2022/2023^2022-3
so sánh A và B giúp e vs ạ
\(A=\dfrac{2023^{2022+2}}{2023^{2022-1}}=2023^{2024-2021}=2023^3\\ B=\dfrac{2023^{2022}}{2023^{2022-3}}=2023^3\\ \Rightarrow A=B\left(=2023^3\right)\)
A=1x2+2x3+3x4+...+49x50
B=1x3+3x5+5x7+...+99x101
C=1x2x3+2x3x4+3x4x5+...+50x51x52
D=1x4+2x5+3x6+...+60x63
E=1x1+2x2+3x3+...+50x50
F=1x1+3x3+5x5+...+71x71
G=1x1+4x4+7x7+...+100x100
I=1x2x3+3x4x5+5x6x7+...+69x70x71
A=1x2+2x3+3x4+...+49x50
3A= 3(1.2+2.3+3.4+...+49.50)
3A= 1.2.3+2.3.3+3.4.3+...+49.50.3
3A= 1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+49.50.(51-48)
3A= 0.1.2-1.2.3+1.2.3-2.3.4+2.3.4-3.4.5+...+48.49.50-49.50.51
3A= 49.50.51
A= 49.50.51/3=41650
B=1x3+3x5+5x7+...+99x101
B=1/1.3 +1/3.5 +...+1/99.101
2B=2/1.3 + 2/3.5 +...+2/99.101
2B=1-1/3+1/3-1/5+...+1/99-1/101
2B=1-1/101
2B=100/101
B=100/101:2=100/202
C=1x2x3+2x3x4+3x4x5+...+50x51x52
Nhân C với 4 ta được:
C x 4 = 1x2x3x4 + 2x3x4x 4 + 3x4x5x4 +…+50x51x52x4
C x 4 = 1x2x3x4 + 2x3x4x(5-1) + 3x4x5x(6-2) + ... + 50x51x52x(53-49)
C x 4 = 1x2x3x4 + 2x3x4x5 - 1x2x3x4 + 3x4x5x6 - 2x3x4x5 + ... +49x 50x51x52 - 50x51x52x53
Sau khi cộng - trừ giản ước ta có : C x 4 = 50x51x52x53
C = 50x51x52x53 : 4 = 1756950
(X-1)/2023 +(x-2)/2022+( x-3)/2023+...+(x-2022/2
B = 1×3+2×3(mũ 2)+3×3(mũ 3)+...+2022×3(mũ 2022)+2023×3(mũ 2023)
\(3B=1.3^2+2.3^3+3.3^4+...+2022.3^{2023}+2023.3^{2024}\)
\(2B=3B-B=-3-3^2-3^3-...-3^{2023}+2023.3^{2024}\)
\(2B=2023.3^{2024}-\left(3+3^2+3^3+...+3^{2023}\right)\)
Đặt
\(C=3+3^2+3^3+...+3^{2023}\)
\(3C=3^2+3^3+3^4+...+3^{2024}\)
\(2C=3C-C=3^{2024}-3\Rightarrow C=\dfrac{3^{2024}-3}{2}\)
\(\Rightarrow2B=2023.3^{2024}-\dfrac{3^{2024}-3}{2}=\)
\(=\dfrac{2.2023.3^{2024}-3^{2024}+3}{2}=\dfrac{4045.3^{2024}+3}{2}\)
\(\Rightarrow B=\dfrac{4045.3^{2024}+3}{4}\)