x/6=y/12 và xy=648
Tìm x và y
Tìm x, y biết: \(\dfrac{x}{6}=\dfrac{y}{12}\) và xy=1800
\(\dfrac{x}{6}=\dfrac{y}{12}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=6k\\y=12k\end{matrix}\right.\)
\(\Rightarrow xy=72k^2=1800\Rightarrow k=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=30\\y=60\end{matrix}\right.\\\left\{{}\begin{matrix}x=-30\\y=-60\end{matrix}\right.\end{matrix}\right.\)
a) Cho \(x + y = 12\) và \(xy = 35\). Tính \({\left( {x - y} \right)^2}\)
b) Cho \(x - y = 8\) và \(xy = 20\). Tính \({\left( {x + y} \right)^2}\)
c) Cho \(x + y = 5\) và \(xy = 6\). Tính \({x^3} + {y^3}\)
d) Cho \(x - y = 3\) và \(xy = 40\). Tính \({x^3} - {y^3}\)
`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.
tìm các số x, y, z biết rằng:
x/2=y/3=z/4 và x.y.z=648
Đặt x/2=y/3=z/4=k
=>x=2k,y=3k,z=4k (*)
=>xyz=2k.3k.4k=24k3 (1)
Mà xyz=648 (2)
Từ (1) và (2) => 24k3=648
=>k3=27
=>k=3 thay vào (*) ta được x=6, y=9, z=12
Tìm các số tự nhiên x và y biết: xy+12=x+y
=>xy-x-y=-12
=>x(y-1)-y+1=-11
=>(y-1)(x-1)=-11
=>\(\left(x-1;y-1\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(11;-1\right);\left(-1;11\right)\right\}\)
mà x,y là số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(12;0\right);\left(0;12\right)\right\}\)
Tìm các số nguyên x và y sao cho : xy = - 12 và x > y
Bài 2. Tìm hai số x và y, biết:
a) x + y = 30; xy = 221 b) x^2 + y^2 =13; xy = 6 và x + y >0
a, do x+y=30 và xy=221 nên u và v là nghiệm của pt :
x2-30x+221=0
\(\Delta^,\)=225-221=4 ;\(\sqrt{\Delta^,}\)=2
=> pt có hai nghiệm phân biệt .
x1=13 ; x2=17
Vậy x=13;y=17 hoặc x=17; y=13
cho x và y biết x/5=y/6 và xy= 270 tìm x và y
Tìm x ,y là số tự nhiên ,biết
1) xy=2. 2) xy=5. 3)xy =6. 4)xy=8. 5)xy=12
6) xy=42 (x<y)
a, x=1; y=2 => 12
x=2; y=1 => 21
b, x=1; y=5 => 15
x=5; y=1 => 51
c, x=1; y=6 => 16
x=6;y=1 => 61
x=2; y=3=> 23
x=3; y=2 => 32
d, x=1; y=8 => 18
x=2; y=4 => 24
x=4; y=2 => 42
x=8; y=1 => 81
5,
x=3; y=4 => 34
x=4; y=3 => 43
x=2; y=6 => 26
x=6; y=2 => 62
1 a) Tìm các giá trị x,y,z,t thoả mãn các điều kiện sau:
x^2+y^2+z^2+t^2=1 và xy+yz+tx=1
b) Tìm các giá trị x,y,z thoả mãn các điều kiện : x+y+z=6 và x^2+y^2+z^2=12