chờ a ,b là số nguyên thỏa mãn:(2a+7b)chia het cho3, chung to rang(4a+2b)cung chia het cho 3
cho(2a+7b)chia het cho 3. chung minh rang(4a+2b)chia het cho3
Ta có 2a+7b chia hết cho 3
=> 2.(2a+7b) chia hết cho 3
=> 4a+14b chia hết cho b
=> 4a+14b-12b chia hết cho 3 ( vì 12b chia hết cho 3 )
=> 4a+2b chia hết cho 3
chung minh rang 11^n+2+12^2n+1 chia het cho 133
chung minh rang A=(17^n+1)(17^n+2)chia het cho 3 voi moi n thuoc N
cho (2a+7b) chia het cho 3 ( a b thuoc N). chung to (4a+2b) chia het cho 3
cho (2a +7b)chia het cho 3 chung minh rang (4a+2b ) chia het cho 3
Nếu 2a + 7b chia hết cho 3 thì :
2+7 chia hết cho 3.
a+b chia hết cho 3
Vì 4 + 2 chia hết cho 3 nên a+b phải chia hết cho 3.
Vậy 4a + 2b chia hết cho 3.
\((2a+7b)\vdots 3\rightarrow (4a+14b)\vdots3\\\rightarrow[(4a+2b)+12b]\vdots3\\mà 12b\vdots3 \rightarrow (4a+2b) \vdots 3. đpcm\)
cho a ,b là số nguyên thỏa mãn 2a+7b chia hết cho 3 chứng minh rằng 4a+2b chia hết cho 3
Ta có : ( 2a + 7b ) + ( 4a + 2b ) = 6a + 9b
=> ( 6a + 9b ) - ( 2a + 7b ) = 4a + 2b
Mà 6a + 9b và 2a + 7b chia hết cho 3 nên 4a + 2b chia hết cho 3
Vì 2a+7b \(⋮\)3
=>2(2a+7b)\(⋮\)3
=>4a+14b\(⋮\)3
=>4a+2b+12b\(⋮\)3
Vì 12b\(⋮\)3
=>4a+2b\(⋮\)3(ĐCCM)
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Cho 2 so khong chia het cho3 , khi chia cho 3 duoc so du khac nhau . Chung to rang tong cua 2 so do chia het cho3
Ta đã biết 1 số khi chia cho 3 chỉ có thể dư 0; 1 hoặc 2
Mà 2 số đề bài cho không chia hết cho 3 và chia 3 có số dư khác nhau
=> trong 2 số đó có 1 số chia 3 dư 1; 1 số chia 3 dư 2
Gọi 2 số đó là: 3.a + 1 và 3.b + 2
Ta có: (3.a + 1) + (3.b + 2)
= 3.a + 1 + 3.b + 2
= 3.a + 3.b + 3
= 3.(a + b + 1) chia hết cho 3
Chứng tỏ ...
cho (2a+7b) chia het cho 3 (a,b thuộc N)
chứng tỏ rằng (4a + 2b) chia het cho 3
giup mk nha....
Ta có : 2a + 7b chia hết cho 3
=> 4a + 14b chia hết cho 3
Ta có : 4a + 14b - (4a + 2b) chia hết cho 3
= 12b chia hết cho 3
=> 4a + 2b chia hết cho 3 (đpcm)
Ta có 2a+7b chia hết cho 3
=> 4a+14b chia hết cho 3
ta có 4a+14b-(4a+2b) chia hết cho 3
=> 12b chia hết cho 3
=> 4a +2b chia hết cho 3 (đpcm )
( 2a + 7b ) \(⋮\)3
=> 4a + 14b \(⋮\)3
Ta có : 4a + 14b - ( 4a + 2b ) \(⋮\)3
=> 12b \(⋮\)3
=> 4a + 2b \(⋮\)3
cho a b là các số nguyên thoả mãn (2a +7b) chia hết cho 3 chứng tỏ (4a+2b) chia hết cho 3
Tim so tu nhien n sao cho:
a/ 5:n+1 b/ 15:n+1 c/ n+3 : n+1 d/ 4n+3:2n+1
Biet rang 7a+2b chia het cho 13 ( a,b thuoc N ). Chung to rang 10a+b cung chia het cho 13 ?
a) Ta có:
\(5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)
Vậy \(n\in\left\{0;4\right\}\)
b) Ta có:
\(15⋮n+1\)
\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)
Vậy \(n\in\left\{0;2;4;14\right\}\)
c) Ta có:
\(n+3⋮n+1\)
\(\Rightarrow\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)
Vậy \(n\in\left\{0;1\right\}\)
d) Ta có:
\(4n+3⋮2n+1\)
\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)
\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow2n+1=1\)
\(\Rightarrow n=0\)
Vậy \(n=0\)