cho tam giác ABC trên tia đối của tia ab lấy điểm M sao cho AM = AB, AN =AC
a, chứng minh tam giác ABC=tam giác AMN
b, chứng minh MN=BC và MN//BC
cho tam giác ABC, trên tia đối tia AB lấy điểm M sao cho AB=AM. Trên tia AC lấy điểm N sao cho AC=AN. Chứng minh:
a) tam giác ABC=tam giác AMN
b) chứng minh BC//MN
c) gọi P và Q lần lượt là trung điểm của BC và MN. Chứng minh A là trung điểm của PQ
cho tam giác ABC, trên tia đối của AB lấy điểm M sao cho AM=AB, trên tia đối của AC lấy điểm N sao cho AN=AC, chứng minh:
a) tam giác ABC= tam giác AMN
b) BC= MN
c) MN // BC
Ta có hình vẽ:
Ta có:
AB = AM ( gt )
A1* = A2* ( 2 gđđ )
AC = AN ( gt )
Do đó tam giác ABC = tam giác AMN
b) Ta có: tam giác ABC = tam giác AMN
=> BC = MN
c) Có N* = C* ( tam giác ABC = tam giác AMN )
Mà N* và C* là hai góc so le trong
=> NM // BC
Chú ý: * là góc.
cho tam giác abc trên tia đối của tia ab lấy điểm m sao cho am=ab trên tia đối tia ac lấy điểm n sao cho an=ac chứng minh tam giác abc=amn mn song song bc
Cho tam giác ABC. Trên tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD= AB và AE= AC
a) Chứng minh: tam giác ABC= tam giác ADE
b) Chứng minh DE // BC
c) Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trung điểm của MN
Trên tia đối của tia AB vẽ điểm M sao cho AM = AB Trên tia đối của tia AC vẽ điểm N sao cho AN = AC Chứng minh tam giác ABC bằng tam giác AMN. BC // MN. tam giác ABC là tam giác gì
Xét ΔABC và ΔAMN có
AB=AM
\(\widehat{BAC}=\widehat{MAN}\)(hai góc đối đỉnh)
AC=AN
Do đó: ΔABC=ΔAMN
=>\(\widehat{ABC}=\widehat{AMN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BC//MN
Cho tam giác ABC. D là trung điểm của AC, E là trung điểm của AB. Trên tia đối của tia DB lấy điểm N sao cho DN = DB. Trên tia đối của tia EC lấy điểm M sao cho EM= EC. Chứng minh tam giác CDN = tam giá ADB. Chứng minh AM // BC. Chứng minh MN = 2.BC
Xét tam giác CDN và tam giác ADB có:
AD=DC(gt)
DN=DB(gt)
Góc ADB=góc NDC (đối nhau)
=> 2 tam giác = nhau(cgc)
Cho tam giác ABC vuông tại A với AB= 3cm, AC= 4cm
a) Tính BC
b) Trên tia đối tia AB lấy M sao cho AM= AC. Trên tia đối tia AC lấy N sao cho AN=AB. Chứng minh BC=MN và NB//MC
c) Gọi I là trung điểm MC. Chứng minh rằng tam giác BIN cân
Ap dụng định lý Pytago vào tam giác vuông \(ABC\)ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)
\(\Leftrightarrow\)\(BC=\sqrt{25}=5\)
Cho tam giác ABC cân tại A . vẽ phân giác ad[d thuộc bc]. kẻ dm vuông góc ab[ m thuộc ab],dn vuông góc ac[ n thuộc ac] a]chứng minh am=an b/ chứng minh mn//bc c/ trên tia đối của m lấy điểm e sao cho md=me, trên tia đối của tia nd lấy điểm f sao cho nd=nf. chứng minh tam giác aef cân
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA