cho a=3+3^2+3^3+....+3^100
Số tự nhiên N,biết rằng 2A +3 =3^N
Cho A=3+3^2+3^3+...+3^100. Tìm số tự nhiên n biết rằng 2A+3= 3^n
Ta có: 3A=32+33+...+3101
3A-A=2A=(32+33+...+3101)-(3+32+...+3100)
2A=3101-3
A=\(\frac{3^{101}-3}{2}\)
=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3
=(3101-3)+3
=3101
Mà 2A+3=3n
=>3101=3n
=>n=101
A=3+32+33+...+3100
2A=(3+32+33+...+3100)x2
2A=32+33+34...+3101
2A-A=3101-3
mà 3n=2A+3=3101-3+3=3101
suy ra n=101
Ta có : A = 3 + 32 + 33 + ... + 3100
3A = 32+33+34+...+3101
Vậy 2A = 3101 - 3
Vậy 2A + 3 = 3101
=> x = 101
Cho $A = 3 + 3^2 + 3^3 + ... +3^{100}$.
Tìm số tự nhiên $n$, biết rằng $2A + 3 = 3^n$.
có A=3+3^2+3^3+..+3^100
3A=3.3+3^2.3+3^3.3+..+3^100.3
3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)
2A=3^101-3
LẤY 3^101-3+3=3^n
3^101=3^n
⇒n=101
Ta có (1)
(2)
Lấy (2) trừ (1) được .
Do đó,
Mà theo đề bài .
Vậy .
Ta có A=3+32+33+...+3100A=3+32+33+...+3100 (1)
3A=32+33+...+3100+31013A=32+33+...+3100+3101 (2)
Lấy (2) trừ (1) được 2A=3101−32A=3101−3.
Do đó, 2A+3=31012A+3=3101
Mà theo đề bài 2A+3=3n2A+3=3n.
Vậy n=101n=101.
Cho A= 3+3^2+3^3+3^4+...+3^100
Tìm số tự nhiên N, biết rằng 2A+3=3^N
=>3A=32+32+…+3101
=>3A-A=32+33+…+3101-3-32-…-3100
=>2A=3101-3
=>2A+3=3101=3N
=>N=101
Vậy N=101
3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101
3A=32+33+34+35+......+3101
3A-A=(32+33+34+35+.....+3101) - (3+32+33+34+.....+3100)
2A=3101-3
2A+3=3101-3+3
2A+3=3101
Mà theo đề bài thì 2A+3=3n suy ra n=101
Cho A=3+3^2+3^3+...+3^100
a) Tính A
b0Timf số tự nhiên n biết rằng 2A+3=3^n
a) A=3+32+33+...+3100
3A=32+33+34+...+3101
3A-A=(32+33+34+...+3101)-(3+32+33+...+3100)
2A=3101-3
b) 2A+3=3101=3n
=>n=101
Cho A= 3+32+33+........+32009. Tìm số tự nhiên n, biết rằng 2A+3=3n
=>3A=32+33+…+32010
=>3A-A=32+33+…+32010-3-32-…-32009
=>2A=32010-3
=>2A+3=32010=3N
=>N=2010
A = 3+32+33+......+32009
3A = 32+33+34+......+32010
2A = 3A - A = 32010-3
=> 2A + 3 = 32010
Mà 2A + 3 = 3n
=> n = 2010
A= 3+32+33+........+32009
=>3A=\(3^2+3^3+3^4+.........+3^{2010}\)
3A-A=3+32010
\(2\left(3+3^{2010}\right)+3=3^n\)
còn lại thì mít lun
cho a=3+32+33+....+3100. tìm số tự nhiên n biết rằng 2a+3=3n
a=3+32+33+....+3100
=>3a=32+33+....+3101
=>3a-a=32+33+....+3101 -(3+32+33+....+3100)
=>2a=32+33+....+3101-3-32-33-...-3100
=>2a=3101-3
=>2a+3=3101
mà theo đề 2a+3=3n
=>n=101
vậy n=101
a=3+32+...+3100
=>3a=32+33+...+3101=> 3a-a=2a=(32+33+...+3101)-(3+32+...+3100)=3101-3
\(\Rightarrow a=\frac{3^{101}-3}{2}\)
=>2a+3=\(2\times\frac{3^{101}-3}{2}+3=\left(3^{101}-3\right)+3=3^{101}-3+3=3^{101}-\left(3-3\right)=3^{101}-0=3^{101}\)
Cho A=3+3²+3³....+3²⁰²⁰. Tìm số tự nhiên n biết rằng 2A+3=3ⁿ
\(3A=3^2+3^3+3^4+...+3^{2021}\)
\(2A=3A-A=3^{2021}-3\)
\(\Rightarrow2A+3=3^{2021}-3+3=3^{2021}=3^n\Rightarrow n=2021\)
Cho A=3 + 32 + 33 + ... + 3100.
Tìm số tự nhiên n, biết rằng 2A + 3 = 3n
3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
Ta có: A=3+32+33+...+3100
=> 3A=32+33+34+...+3100+3101
=>3A-A=32+33+34+...+3100+3101-(3+32+33+...+3100)
=> 2A=3101-3
=>2A+3=3101
Lại có: 2A+3=3n
=> 2A+3=3101=3n
=> 3101=3n
=> 101=n
Vậy n=101
A=3 + 32 + 33 + ... + 3100
3A=32 + 33 + 34 + ... + 3101
3A - A =(32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A=3101 - 3
2A + 3 = 3n = 3101
=> n = 101
Cho A = 3 + 32 + 33 + ....+ 32020. Tìm số tự nhiên n biết rằng 2A + 3 = 3n