cho hình bình hành ABCD có m,n là trung điểm của AB và CD, AN và CM cắt BD ở EF. CM
a)AM=CN và tứ giác AMCN là hình bình hành
b)F là trung điểm của BE
c)DE=EF=FB
Bài 2. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm AB và CD.
a/ Chứng minh tứ giác AMCN là hình bình hành
b/ AN và CM cắt BD theo thứ tự tại E và F. Chứng minh DE = EF = FB
c/ Tìm điều kiện của hình bình hành ABCD để tứ giác MENF là hình chữ nhật
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Cho hình bình hành ABCD, M và N là trung điểm của AB và CD.
a/ Chứng minh: AMCN là hình bình hành.
b/ BD cắt AN ở E, cắt CM ở F. Chứng minh: DE = EF = FB.
Cho hình bình hành ABCD có M,N là trung điểm của AB,CD.AN và CM cắt BD ở E,F.CMR
a,AM=CN và AMCN là hbh
b,F là trung điểm của BE
c,DE=EF=FB
Cho hình bình hành ABCD có M,N là trung điểm của AB,CD.AN và CM cắt BD ở E,F.CMR
a,AM=CN và AMCN là hbh
b,F là trung điểm của BE
c,DE=EF=FB
cho hình bình hành ABCD có M,N là trung điểm của AB và CD , AN và CM căt sBD ở E và F . Chứng minh :
a) AM=CN và tứ giác AMCN là hình bình hành
b) F là trung điểm của BE và E là trùn điểm của DF
Cho hình bình hành ABCD có E và F lần lượt là trung điểm của AB và DC. Gọi M,N lần lượt là giao điểm của AC với DE và BF.
a) CM: Tứ giác DEBF là hình bình hành
b) CM: AM=MN=NC
c) MN cắt EF tại O. CM: B đối xứng với D qua O.
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
=>AM=MN(1)
Xét ΔMCD có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NC=NM(2)
Từ (1) và (2) suy ra AM=MN=NC
Cho hình bình hành ABCD có M,N là trung điểm của AB và CD,AN và CM cắt BD ở E và F.
a)Chứng minh AMCN là hình bình hành
b)Chứng minh AC;MN;EF đồng quy
Cho hình bình hành ABCD, Gọi M và N lần lượt là trung điểm của AB và CD. Các đường thẳng AN và CM cắt đường chéo BD tại E và F.
a) Chứng minh rằng DE = EF = FB
b) Từ điểm F kẻ đường thẳng // DC cắt AN tại P. Chứng minh tứ giác DPFN là hình bình hành.
Cho hình bình hành ABCD, Gọi M và N lần lượt là trung điểm của AB và CD. Các đường thẳng AN và CM cắt đường chéo BD tại E và F.
a) Chứng minh rằng DE = EF = FB
b) Từ điểm F kẻ đường thẳng // DC cắt AN tại P. Chứng minh tứ giác DPFN là hình bình hành.