Chứng minh rằng :
a, 35^6 - 35^5 chia hết cho 34
b, 43^4 + 43^5 chia hết cho 44
Chúng minh rằng
a)356-355chia hết cho 34
b)434+435chia hết cho 44
a, ta có 356-355 = 355. 35 - 355.1
= 355.(35-1) =355 .34
vì 34 chia hết cho 34 nên 355.34 chia hết cho 34 nên 356-355 chia hết cho 34
b, ta có 434+435 = 434.1+434.43= 434.(1+43)
= 434.44
vì 44 chia hết cho 44 nên 434.44 chia hết cho 44 nên 434+435chia hết
cho 44
chúc bạn học giỏi nhé
b, \(43^4+43^5=43^4.1+43^4.43=43^4.\left(1+43\right)=43^4.44⋮44\)
1.Chứng minh rằng;
a)356-355 chia hết cho 34
b)434+435 chia hết cho 44
c)n(2n-3)-2n(n+2) chia hết cho 7,\(\forall\)n \(\in\)Z
CMR
a)\(35^6-36^5\)Chia hết cho 34
b)\(43^4+43^5\)Chia hết cho 44
c)Chứng tỏ rằng biểu thức (2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi gtrị của m và n
Chứng minh rằng : 434 + 435 chia hết cho 44
Ta có :
\(43^4+43^5\)
\(=43^4\left(1+43\right)\)
\(=43^4.44⋮44\)
Vậy \(43^4+43^5⋮44\).
Học tốt
\(43^4+43^5\)
\(=43^4\left(1+43\right)\)
\(=43^4.44⋮44\)
\(\Rightarrow\)\(43^4+43^5⋮44\)
Ta có: \(43^4+43^5=43^4+43^4\cdot43=43^4\cdot\left(1+43\right)=43^4\cdot44\)
Ta thấy: \(43^4\cdot44\)chia hết cho \(44\)
Nên: \(43^4+43^5\)chia hết cho 44
Chứng minh:
a/ 352005 - 352004 chia hết cho 17
b/ 432013 + 432019 chia hết cho 11
c/ 273 + 95 chia hết cho 4
LÀM ƠN............T_T
a) \(35^{2005}-35^{2004}=35^{2004}.\left(35-1\right)=35^{2004}.34=35^{2004}.2.17\)\(⋮\)\(17\)
c) \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9.4\) \(⋮\)\(4\)
hok tốt
Chứng minh rằng : 434 + 435 chia hết cho 44
Bài làm:
Ta có: \(43^4+43^5\)
\(=43^4\left(1+43\right)\)
\(=43^4.44⋮44\)
=> đpcm
Ta có : 434 + 435 = 434(1 + 43) = 434.44 \(⋮\)44
=> 434 + 435 \(⋮\)44 (đpcm)
Ta có:
\(43^4+43^5=43^4\left(1+43\right)\)
\(=43^4\times44⋮44\)(đpcm)
#Shinobu Cừu
5^43 nhân 7 chia hết cho 35
Chứng minh?????
Chứng minh rằng:
a) 7^6+7^5-7^4 chia hết cho 55 ;
b) 16^5+2^15 chia hết cho 33;
c) 6^300+6^299+6^298 chia hết cho 43;
d)5^2001+5^2000+5^1999 chia hết cho 155
a,=7^4(7^2+7-1)
=7^4.55 vậy nó chia hết cho 55
b,16^5=2^20
2^15(2^5+1)
2^15.33 chia hết cho 33
các câu c,d cũng tương tự
ggghghghghghgghghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhfffffgggggggggggggggggggggggggggggggggggggggggggggggggggggggggdddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddbbbgjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbblllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnn | |
Chứng minh rằng : \(43^{43}-17^{17}\)chia hết cho 5
Ta có:
⇒4343=4320.2+3=4340.433=....1 . ...7 = ...7
⇒1717 = 174.4+1=1716.17=...1 . 17= ....7
⇒4343-1717=...7-...7=....0
⇒\(43^{43}-17^{17}\)⋮5(đpcm)