Cho hình thang ABCD M là trung điểm của AD N là trung điểm của BC.Đường thẳng qua A vuông góc vs phân giác ngoài của hình thang tại đỉnh D ở I Đường thẳng qua B vuông góc vs phân giác ngoài của hình thang tại đỉnh C ở K Chứng minh M,N,I,K thẳng hàng
Cho tam giác ABC vuông góc tại đỉnh A. Đường cao AH, dựng về phía ngoài tam
giác các hình vuông ABMN ,ACIK . Chứng minh rằng:
a) Ba điểm M, A, I thẳng hàng;
b) Tứ giác CKNB là hình thang cân
c) AH đi qua trung điểm D của NK và các đường thẳng AH, IK, MN , cắt nhau tại
điểm E
d) Các đường thẳng AH CM BI , đồng quy và AN2=NK2−AK2
1) Cho tam giác ABC phân giác AD. Qua D dựng đường thẳng song song với AB đường thẳng này cắt AC tại E. Qua E dựng đường thẳng song song với BC đường thẳng này cắt AB tại F. a) chứng minh AE=AF, b) Xác định hình dạng của tam giác ABC trong trường hợp E là trung điểm AC.
2) Cho hình bình hành ABCD. Từ B kẻ BH vuông góc với AC. Gọi M,N,P,Q lần lượt là trung điểm của AH,AB,NB,BC. a) MP=1/2 NC. b) chứng minh BM vuông góc với NQ.
3) cho tam giác ABC, các đường thẳng AP,AQ theo thứ tự vuông góc với phân giác trong và phân giác ngoài góc B. Các đoạn thẳng AR, AS vuông góc phân giác trong và phân giác ngoài góc C. a) chứng minh APBQ, ÁC là hình chữ nhật, b) Q,R,P,S thẳng hàng, c) QS=1/2 (AB+BC+AC)
cho tam giác ABC. Gọi b là đường phân giác của góc ngoài tại đỉnh B, c là đường phân giác của góc ngoài tại đỉnh C. Qua A kẻ đường thẳng vuông góc b cắt BC tại M, qua A kẻ đường thẳng vuông góc c cắt BC tại N a) tam giác ABM, tam giác ACN là tam giác gì b) Gọi O là giao điểm của b và c. Chứng minh AO là tia phân giác của góc BAC d ) Chứng minh đường trung trực của MN đi qua điểm O
cho hình thang abcd (ab//cd) mn là trung điểm của bd và ac đường thẳng đi qua m vuông goc ad cắt đường thẳng đi qua n vuông góc vs bc tại e cm ed=ec
3) cho hình thang vuông ABCD, <A=<D=90 độ( AB=AC=CD).qua điểm E thuộc cạnh AB kẻ đường thẳng vuông góc với DE cắt BC tại F.
CM: ED=EF
4) cho hình thang ABCD(AB//CD).M là trung điểm của BC, Góc AMD=90 độ. CM: DM là tia phân giác góc D
ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc
kéo dài DA và CB cắt nhau tại K
AB là đường trung bình ( AB//DC và 2AB = DC)
=> B là trung điểm KC
=> DB là trung tuyến ΔKDC vuông tại D
=> DB = BC = DC
=> tam giác DBC đều
Vậy góc KCD= 60độ
tổng 4 góc trong tứ giác ABCD = 360độ
=> góc ABC = 120độ
cách 2
Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật
nên ^ABH=90* (1)
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*
Cho hình thang cân ABCD(AB//CD) gọi E,F,K theo thứ tự là trung điểm của AD,BC,BD.Các tia phân giác của các góc ngoài ở đỉnh A và D cắt ngau tại M, các tia phân giác của các góc ngoài ở đỉnh B và C cắt nhau tại N. Chứng minh: MN//AB
Các bạn giúp mk nha! Thanks😀❤❤
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
bạn đăng từng bài lên 1 đi
mik giải dần cho
Cho DABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a) Chứng minh AE là phân giác góc CAB
b) Chứng minh AD là trung trực của CD
c) So sánh CD và BC
d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB.
Bài 1 : Cho hình thang cân ABCD (AB//CD).M là điểm trên cạnh AD , đường thẳng qua M song song với DC cắt BC ở N . GỌi O là giao điểm của CM và DN
a) Chứng minh ABNM là hình thang cân
b) Chứng minh OD = OC ; OM = ON
Bài 2 : ChoTam giác ABCD là tam giác vuông tại A , từ C kẻ đường thẳng cuông góc với phân giác của góc B tại H , CH cắt BA tại D .Vẽ AE vuông góc với BH tại E, AE cắt BC ở F
a) Tứ giác AEHD là hình gì ? Vì sao ?
b) Chứng minh AFCD là hình thang cân
Không cần vẽ hình cũng được
Cho hình thang ABCD (AD//BC). Tia phân giác góc A cắt cạnh BC tại E a)Chứng minh: AB=BE b)Tia phân giác góc B cătd AE tại F. Chứng minh: BF vuông góc FE c)Gọi M là trung điểm của AB, N là trung điểm của CD. Chứng minh 3 điểm: M, F, N thẳng hàng Giúp mình với ạ, cảm ơn
a: Xét ΔABE có \(\widehat{BAE}=\widehat{BEA}\left(=\widehat{DAE}\right)\)
nên ΔABE cân tại B
hay BA=BE
b: Ta có: ΔBAE cân tại B
mà BF là đường phân giác ứng với cạnh AC
nên BF là đường cao ứng với cạnh AC