kẻ cho e cả hình
cho tam giác abc lấy e , f thuộc ac . qua e, f kẻ đường thẳng // ab cắt bc ở m và n , qua e kẻ đường thẳng // bc cắt ab tại d
a ) fn = ad
b ) fn + em = ab
( vẽ cả hình cho mình được không )
cho tam giác abc có góc a bằng 2 lần góc b. Kẻ TPG AD. Từ D kẻ DE//AB(e thuộc AC). từ E kẻ EF//AD (F thuộc BC. từ F kẻ FK//DE (K thuộc AC). a) tìm tất cả các góc bằng góc B; b) tìm trên hình vẽ các tam giác có 2 góc bằng nhau; c)CMR:DE là TPG của góc ADC, EF là TPG của DEC, FK là tia phân giác củaÈC
cho đtròn (O;R) và điểm A nằm ngoài đtròn. Qua A kẻ các tiếp tuyến AB, AC (B,C là tiếp điểm) và kẻ cát tuyến AMN vs đtròn sao cho AM < AN đồng thời tia AN nằm giữa hai tia AB và AO.
a) Cm: 4 điểm A,B,O,C cùng nằm trên một đtròn
b) Cm: AB2 = AM.AN
c) Đoạn thẳng AO cắt đtròn (O) taị E. Cm E cách đều ba cạnh của tam giác ABC
các b giải hộ bài hình cho mih vs nhé vs cả vẽ cả hình nữa nha <3
cho tam giac ABC có góc A gấp đôi góc B. kẻ phân giác AD. Từ D kẻ DE// AB (E thuộc AC). từ E kẻ EF//AD(F thuộc BC) và từ F kẻ FK//DE( K thuộc AC)
A) tìm tất cả các góc bằng B
B) tìm trên hình vẽ có 2 góc bằng nhau
C) cmr: DE là phân giác của góc ADC, EF là phân giác góc DEC, FK là phân giác góc EFC
(Giúp em với, vẽ cả hình ạ)Cho 🔺ABC vuông cân tại A có trung tuyến AM.Lấy E thuốc BC(E khác M) kẻ Bh vuông góc AE,CK vuông góc AE. Chứng minh: a)góc BAM=góc MCA=45 độ. b)góc EAM=góc KCE. c) BH=AK. d)🔺HMK vuông cân tại M
a/
Ta có
tg ABC vuông cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{MCA}\)
Mà \(\widehat{ABC}+\widehat{MCA}=180^o-\widehat{A}=180^o-90^o=90^o\)
\(\Rightarrow\widehat{ABC}=\widehat{MCA}=\dfrac{90^o}{2}=45^o\)
Ta có
\(MB=MC\Rightarrow AM\perp BC\Rightarrow\widehat{AMB}=90^o\) (Trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
Xét tg vuông AMB
\(\widehat{BAM}=180^o-\left(\widehat{ABC}+\widehat{AMB}\right)=180^o-\left(45^o+90^o\right)=45^o\)
\(\Rightarrow\widehat{BAM}=\widehat{MCA}=45^o\)
b/
Xét tg vuông EAM có
\(\widehat{EAM}=180^o-\left(\widehat{AME}+\widehat{AEM}\right)=180^o-\left(90^o+\widehat{AEM}\right)\) (1)
Xét tg vuông KCE có
\(\widehat{KCE}=180^o-\left(\widehat{CKE}+\widehat{CEK}\right)=180^o-\left(90^o+\widehat{CEK}\right)\) (2)
Mà \(\widehat{AEM}=\widehat{CEK}\) (góc đối đỉnh) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{EAM}=\widehat{KCE}\)
c/
Ta có
\(\widehat{BAM}=\widehat{MCA}=45^o\) (cmt)
\(\widehat{EAM}=\widehat{KCE}\) (cmt)
\(\Rightarrow\widehat{BAM}+\widehat{EAM}=\widehat{MCA}+\widehat{KCE}\Rightarrow\widehat{BAH}=\widehat{ACK}\)
Xét tg vuông BAH và tg vuông ACK có
\(\widehat{BAH}=\widehat{ACK}\) (cmt)
AB=AC (cạnh bên tg cân)
=> tg BAH = tg ACK (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
=> BH=AK
d/
Xét tg vuông AME có
\(\widehat{EAM}+\widehat{AEB}=90^o\)
Xét tg vuông BHE có
\(\widehat{EBH}+\widehat{AEB}=90^o\)
\(\Rightarrow\widehat{EAM}=\widehat{EBH}\) (cùng phụ với \(\widehat{AEB}\) )
Xét tg AMK và tg BMH có
\(\widehat{EAM}=\widehat{EBH}\) (cmt)
AK=BH (cmt)
\(AM=BM=CM=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg AMK = tg BMH (c.g.c)=> MH=MK => tg HMK cân tại M
d/
Ta có tg AMK = tg BMH (cmt)
\(\Rightarrow\widehat{AKM}=\widehat{BHM}\)
Mà \(\widehat{BHM}+\widehat{MHK}=\widehat{BHK}=90^o\)
\(\Rightarrow\widehat{AKM}+\widehat{MHK}=90^o\)
Xét tg MHK có
\(\widehat{HMK}=180^o-\left(\widehat{AKM}+\widehat{MHK}\right)=180^o-90^o=90^o\)
=> tg HMK vuông cân tại M
AI trả lời đầu tiên 1 mk cho 1 like nha
Cho tam giác ABC có 2 góc A gấp đôi góc B.kẻ phân giác AD
Từ D kẻ DE//AB (E thuộc AC)
Từ E kẻ EF//AD (F thuộc BC )
Và từ F kẻ FK//DE(K thuộc AC)
a/tìm tất cả góc bằng B
b/tìm trên hình vẽ các tam giác có 2 góc bằng nhau
c/cmr DE là phân giác góc ADC , EF là phân giác của góc DEC,FK là phân giác EFK
nhớ vẽ hình lun nha
Cho hình vẽ
a, Ta có; \(CN=BM\)
\(CN\leftarrow MN=BM-MN\)
\(CM=BN\)
Xét \(\Delta ACM\) và \(\Delta ABN\)
\(AC=AB''gt''\)
\(CM=BN\)
\(\widehat{ABM}=\widehat{ABN}''gt''\)
\(\Rightarrow\Delta ACM=\Delta ABN\)
\(\Rightarrow AM=AN\)
\(\Rightarrow\Delta AMN\) Cân
b, \(\Delta ABM\) cân tại \(B\rightarrow\widehat{ABM}=\widehat{MAB}\)
\(\Rightarrow\widehat{ABM}=90^o-\widehat{CAM}\)
Mà \(\widehat{ABM}=180^o-\widehat{AMC}\)
\(\Rightarrow180^o-''180^o-\widehat{CAM}-\widehat{AMC}''\)
\(\Rightarrow\widehat{CAM}+\widehat{ACM}\)
Từ 1 và a/ \(\Rightarrow90^o-\widehat{CAM}-CAM+\widehat{AMC}\)
\(\Leftrightarrow\widehat{CAM}=\frac{90^o+\widehat{ACM}}{2}=\frac{45^o}{2}=22\)
c, \(\widehat{NAM}=90^o-2.\widehat{CAM}=45^o\)
P/s; Em ko chắc đâu nhé
cho hình vuông ABCD. Trên tia đối CB lấy điểm E, trên tia đối DC lấy điểm F sao cho BE= DF. Qua E kẻ đường thẳng song song AF. Qua E kẻ dường thẳng song song AE. Chúng cắt nhau tại I. Chứng minh tứ giác AEIF là hình vuông
cho hình vuông ABCD. Trên tia đối CB lấy điểm E, trên tia đối DC lấy điểm F sao cho BE= DF. Qua E kẻ đường thẳng song song AF. Qua E kẻ dường thẳng song song AE. Chúng cắt nhau tại I. Chứng minh tứ giác AEIF là hình vuông
cho hình vuông ABCD. Trên tia đối CB lấy điểm E, trên tia đối DC lấy điểm F sao cho BE= DF. Qua E kẻ đường thẳng song song AF. Qua E kẻ dường thẳng song song AE. Chúng cắt nhau tại I. Chứng minh tứ giác AEIF là hình vuông