Câu 1: x2 _ 2 căn 15 nhân x +15 = 0
Câu 2: Tìm x
x2 = a
Câu 3: So sánh
-3 căn 11 và -1
Câu 1: x2 _ 2 căn 15 nhân x +15 = 0
Câu 2: Tìm x
x2 = a
Câu 3: So sánh
-3 căn 11 và -1
1. So sánh 1+căn 15 và căn 24
2.Giải phương trình
a. x^3-5x^2=2x^2-10
b.3x-7 căn x= 20
c.1+ căn 3x > 3
d. x^2 - x căn x - 5x - căn x - 6 = 0
1/
Ta có: \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)
\(\sqrt{24}^2\)= 24 = 16 + 8
Vì: \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)
Nên: \(\sqrt{15}< 4\)
=> \(2\sqrt{15}< 8\)
=> \(16+2\sqrt{15}< 24\)
=> \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
2/
b/ \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)
<=> \(3x-7\sqrt{x}-20=0\)
<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)
<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)
<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)
<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)
<=> \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)
<=> \(x=16\)
Vậy S=\(\left\{16\right\}\)
c/ \(1+\sqrt{3x}>3\)
<=> \(\sqrt{3x}>2\)
<=> \(3x>4\)
<=> \(x>\frac{4}{3}\)
d/ \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))
<=> \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)
<=> \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\)
<=> \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)
<=> \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
<=> \(x+1=0\) hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)
<=> \(x=-1\)(loại) hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)
Vậy S={ 9 }
(15 căn x-11/x+2 căn x -3) + ( 3 căn x -2/1- căn x) - ( 2 căn x +3/ căn x +3)
a. rút gọn biểu thức
b. tìm giá trị lớn nhất của biểu thức và giá trị của x tương ứng
Bài1: Rút gọn biểu thức A, A= ( căn 2/3 + căn 50/3 - căn 24) . căn 6 B, B= căn 14 - căn 7 / căn 2-1 + căn 15 - căn 5 / căn 3 -1 ) : 1/ căn 7 - căn 5 b, So sánh A và B Bài 2: Giải các phương trình sau a, căn 3x -5 căn 12x + 7 căn 27x =12 b, x / 1+ căn 1+x -1
Giúp mình phương trình chứa căn nhe?
PHƯƠNG TRÌNH CĂN THỨC Câu 23. 3 nhân căn bậc 3’ 1 + x ‘ – 2 nhân căn bậc 4 ‘ 1 + x “ =8 Câu 25 5 nhân căn x cộng 5 chia “ 2 nhân căn x “ < 2x cộng 1 chia ‘2x’ cộng 4 Câu 27: Căn bậc 3 “ 2-x” = 1- căn ‘x-1” Câu 28; 2/3 nhân căn”x – x bình phương’’ + 1 = căn’x” + căn “1 – x” Câu 30: Căn “ 4x +1’ -
rút gọn biểu thức : A= 3.căn x -2 /1- căn x - 2. căn x +3/căn x + 3 + 15. căn x -11/x+ 2.căn x -3
câu 1:tính
a) 4x2-9y2 b) ( 3x+y)3
câu 2 phân tích đa thức thành nhân tử
b) 4x2-12x+9
câu 3:tìm x,biết:6x3+16x2-150x-400=0
câu 4:phân tích đa thức thành nhân tử:D=(x+1)(x+3)(x+5)(x+7)+15
Câu 1 : Phương trình nào trong các phương trình dưới đây là phương trình bậc nhất ?
A. 7 - x - 3x2 = x - 3x2 B. 4 - x = - ( x - 1)
C. 3 - x + x2 = x2 - x - 2 D. ( x - 3 )( x + 5 ) = 0
Câu 2 : Phương trình nào dưới đây có tập nghiệm là S = {3; -1}
A. ( x + 3)(x - 1) = 0 B. x2 + 3x + 2 = 0
C. x( x – 3)(x + 1)2 = 0 D. ( x – 3)(x + 1) = 0
Câu 3 : Phương trình nào dưới đây có vô số nghiệm ?
A. ( x + 3 )( x2 + 5 ) = 0. B. x2 = - 9
C. x3 = - 27 D. 5x - 3 + 3x = 8x - 3
Câu 4 : Phương trình - 2x2 + 11x - 15 = 0 có tập nghiệm là:
A. 3 B. C . D.
Câu 5. Điều kiện xác định của phương trình là:
A hoặc x ≠ -3 B.; C. và x ≠ - 3; D. x ≠ -3
Câu 6. Biết và CD = 21 cm. Độ dài của AB là:
A. 6 cm B. 7 cm; C. 9 cm; D. 10 cm
Câu 7. Cho tam giác ABC, AM là phân giác (hình 1). Độ dài đoạn thẳng MB bằng:
A. 1,7 B. 2,8 C. 3,8 D. 5,1
Câu 8. Trong Hình 2 biết MM' // NN', MN = 4cm, OM’ = 12cm và M’N’ = 8cm. Số đo của đoạn thẳng OM là:
A. 6cm; B. 8cm; C. 10cm; D. 5cm
Hình 1 Hình
1.B
2.D
3.B
4;5;6;7;8( bạn sửa lại đề nhé )
Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
Câu 16. Tìm giá trị lớn nhất của biểu thức:
Câu 17. So sánh các số thực sau (không dùng máy tính):
Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3
Câu 19. Giải phương trình: .
Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.
Câu 21. Cho .
Hãy so sánh S và .
Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:
Câu 24. Chứng minh rằng các số sau là số vô tỉ:
Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Câu 26. Cho các số x và y khác 0. Chứng minh rằng:
Câu 27. Cho các số x, y, z dương. Chứng minh rằng:
Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Câu 29. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.
Câu 29:
a: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\)(luôn đúng)