Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huệ Lam
Xem chi tiết
Thánh Ca
27 tháng 8 2017 lúc 16:21

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

Nguyễn Võ Anh Nguyên
Xem chi tiết
Edogawa Conan
Xem chi tiết
Nhật Hạ
13 tháng 12 2019 lúc 20:45

Tham khảo: Câu hỏi của Đậu Đình Kiên

Khách vãng lai đã xóa
Nguyễn Hoàng Hải
Xem chi tiết
Nguyễn Đăng Nhân
9 tháng 2 2022 lúc 10:26

*Giá trị nhỏ nhất của A  đặt được khi \(ab=12;bc=8\)tại điểm rơi \(a=3,b=4,c=2\)Ta áp dụng bất đẳng thức cho từng nhóm sau:

\(\left(\frac{a}{18};\frac{b}{24};\frac{2}{ab}\right),\left(\frac{a}{9};\frac{c}{6};\frac{2}{ca}\right),\left(\frac{b}{16};\frac{c}{8};\frac{2}{bc}\right),\left(\frac{a}{9};\frac{c}{6};\frac{b}{12};\frac{8}{abc}\right)\)

Áp dụng bất đẳng thức Cô si, ta có:

\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3\sqrt[3]{\frac{a}{18}\cdot\frac{b}{24}\cdot\frac{2}{ab}}=\frac{1}{2}\)

\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ca}\ge3\sqrt[3]{\frac{a}{9}\cdot\frac{c}{6}\cdot\frac{2}{ca}}=1\)

\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3\sqrt[3]{\frac{b}{16}\cdot\frac{c}{8}\cdot\frac{2}{bc}}=\frac{3}{4}\)

\(\frac{a}{9}+\frac{c}{6}+\frac{b}{12}+\frac{8}{abc}\ge4\sqrt[4]{\frac{a}{9}\cdot\frac{c}{6}\cdot\frac{b}{12}\cdot\frac{8}{abc}}=\frac{4}{3}\)

\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}\cdot\frac{13b}{24}}\ge2\sqrt{\frac{13}{18}\cdot\frac{13}{24}\cdot12}=\frac{13}{3}\)

\(\frac{13b}{48}+\frac{13c}{24}\ge2\sqrt{\frac{13b}{48}\cdot\frac{13c}{24}}\ge2\sqrt{\frac{13}{48}\cdot\frac{13}{24}\cdot8}=\frac{13}{4}\)

Cộng theo vế các bất đẳng thức trên ta được:

\(\left(a+b+c\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\left(đpcm\right)\)

Đẳng thức xảy ra khi \(a=3;b=4;c=2\)

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Chờ thị trấn
Xem chi tiết
Hoàng Đức Khải
Xem chi tiết
Lê Thanh Hà
17 tháng 8 2019 lúc 16:26

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...

Nguyễn Thị Tố Nữ
Xem chi tiết
Bùi Vân Giang
Xem chi tiết
Trí Tiên
19 tháng 2 2020 lúc 13:10

Do \(abc=2018,bc+b+1\ne0\) nên thay vào biểu thức A ta có :

  \(A=\frac{2018}{abc+bc+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)

\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)

\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)

\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}=1\)

Vậy : \(A=1\) với a,b,c thỏa mãn đề.

Khách vãng lai đã xóa
Lê Tài Bảo Châu
19 tháng 2 2020 lúc 13:12

\(A=\frac{2018}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)

\(=\frac{abc}{abc+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+abc}\)

\(=1\)

Vậy ...

Khách vãng lai đã xóa