1/(1x2)+1/(2x3)+1/(3x4)...+1/xx(x+1)
1/1x2+1/2x3+1/3x4+1/24x25
1/1x2+ 1/2x3+1/3x4+1/24x25
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
Tìm x, biết:
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+........+\frac{1}{Xx\left(x+1\right)}=\frac{499}{500}\)
Ai đúng cho 3tick
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{499}{500}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{499}{500}\)
\(1-\frac{1}{x+1}=\frac{499}{500}\)
\(\frac{1}{x+1}=1-\frac{499}{500}=\frac{1}{500}\)
=> x + 1 = 500
=> x = 500 - 1
=> x = 499
Vậy x = 499
1/1.2 + 1/2.3 + 1/3.4 +...+ 1/x.(x+1)=499/500
1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 +...+ 1/x -1/(x+1) =499/500
1-1/(x+1)=499/500
=>x/(x+1)=499/500
=>x=499
1/1x2 + 1/2x3 + 1/3x4 + ... 1/99 x 100
1/1.2 +1/2.3 +1/3.4 +....+1/99.100
=1-1/2+1/2-1/3+1/3-14+.....+1/99-1/100
=1-1/100
=99/100
tham khảo
1/1.2 +1/2.3 +1/3.4 +....+1/99.100
=1-1/2+1/2-1/3+1/3-14+.....+1/99-1/100
=1-1/100
=99/100
Tìm \(X\), biết :
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+.....+\frac{1}{Xx\left(x+1\right)}=\frac{499}{500}\)
Ai giúp mk cho 5 tick
Ta có: 1/1x2 + 1/2x3 + 1/3x4 +...+ 1/X x (X + 1) = 499/500
=> 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/X - 1/(X + 1) = 499/500
=> 1 - 1/(X + 1) = 499/500
=> 1/(X + 1) = 1 - 499/500
=> 1/(X + 1) = 1/500
=> X + 1 = 500
=> X = 500 - 1
=> X = 499
Đáp số: X = 499
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100))
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100
haizzz đáng tiếc tôi muốn ns là: ko bao f và đừng mong chờ OK
1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100
Lên Qanda mà hỏi
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100))