Cho nửa đường tròn tâm O, đường kính AB, kẻ tiếp tuyến BM, MA cắt nửa đường tròn tâm O tại N. Gọi I là trung điểm của AN. Chứng minh tam giác OBM đồng dạng với tam giác INB
Cho nửa đường tròn tâm O đường kính AB, điểm C thuộc nửa (O) , D là điểm thuộc đường kính AB. Qua D kẻ đường thẳng vuông góc với AB cắt BC tại F, cắt AC tại E. Tiếp tuyến tại C của nửa đường tròn cắt EF tại I. Chứng minh: a) I là trung điểm EF b) Đường thăng OC là tiếp truyến của đường tròn ngoại tiếp tam giác ECF.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho nửa đường tròn (O) đường kính AB. Trên cùng nửa mặt phẳng bờ chứa AB kẻ tiếp tuyến Ax và By với nử đường tròn tâm O. Qua C bất kì trên nửa đường tâm O (C khác A và B) kẻ tiếp tuyến đối với nửa đường tròn tâm O, tiếp tuyến này cắt Ax, By lần lượt ở M và N.
Gọi K là giao điểm của AN và BM, CK cắt AB tại H. Chứng minh K là trung điểm của CH
Cho nửa đường tròn tâm O đường kính AB và 1 điểm I nằm giữa AB. C là điểm nằm trên nửa đường tròn (O). Đường thẳng kẻ qua C vuông góc IC cắt các tiếp tuyến của nử đường tròn tại A và B lần lượt ở M,n
a, chứng minh tam giác ABC dồng dạng với tam giác CBN
Cho nửa đường tròn (O; R) đường kính AB. Điểm M thuộc nửa đường tròn. Gọi H là điểm chính giữa cung AM. Tia BH cắt AM tại I. Tiếp tuyến của nửa đường tròn tại A cắt BH tại K. Nối AH cắt BM tại E.
1. Chứng minh tam giác BAE là tam giác cân;
2. Chứng minh KH.KB=KE2;
3. Đường tròn tâm B, bán kính BA cắt AM tại N. Chứng minh tứ giác BIEN nội tiếp.
ban tu ve hinh nhe
Ta co goc AEBnam ngoai dt nen goc AEB = 1/2(CUNG AB-cungHM)=1/2(cungHM+ cung MB)
ma goc Achan cung HB nen AEB=A nen tam giac AEB can o B
ban se de cm duoc AEBK thuoc 1dt nenKEB=90 nen KE^2=KH.KB
xet tam giac AEB co EI la duong cao con lai nenEIM dong dang EAB nenEIM=EBA
ma EBA=MBN nen EIM=MBN
ma EIM VA MBNcung nhin EN nenIENB thuoc 1duong tron
Cho đường tròn (O;R). Từ điểm A nằm ngoài đường tròn vẽ tiếp tuyến AB với(O) ( với B là tiếp tuyến ). Kẻ đường kính BM của đường tròn tâm O, AM cắt (O) tại K ( K ≠ M )
a, Chứng minh tam giác BMK vuông, từ đó chứng minh AB2 =AM.AK
b, Gọi I là trung điểm của AB> Chứng minh IK là tiếp tuyến của (O).
a) Ta có \(I\) là trung điểm \(AB,O\) là trung điểm \(BM\)
\(\rightarrow IO\) là đường trung bình \(\Delta ABM\rightarrow OI\text{/ / }AM\rightarrow OI\text{/ / }KM\)
Vì \(BM\) là đường kính của \(O\)\(\rightarrow BK\text{⊥}KM\rightarrow OI\text{⊥}BK\)
\(\rightarrow B,K\) đối xứng qua \(OI\)
\(\rightarrow\widehat{IKO=\widehat{IBO}=90^o}\)
\(\rightarrow IK\) là tiếp tuyền của \(O\)
Biết mỗi làm câu A
a, ^BKM = 900 ( góc nt chắn nửa đường tròn )
Xét tam giác BMK có : ^BKM = 900
Vậy tam giác BMK vuông tại K
Vì AB là tiếp tuyến đường tròn (O) => ^ABO = 900
Xét tam giác ABM vuông tại B có BK là đường cao
\(AB^2=AK.AM\)( hệ thức lượng )
b, Ta có : ^BKM = 900 ( góc nt chắn nửa đường tròn )
=> ^BKA = 900
Xét tam giác BKA vuông tại K, có I là trung điểm AB
=> IK = IA = IB
Xét tam giác IKO và tam giác IBO có :
IK = IB ( cmt )
IO _ chung
OK = OB = R
Vậy tam giác IKO = tam giác IBO ( c.c.c )
=> ^IKO = ^IBO = 900 ( 2 góc tương ứng )
Xét (O) có : K thuộc IK; K thuộc (O)
=> IK là tiếp tuyến đường tròn (O)
Cho nửa đường tròn (O,R) đường kính AB . Gọi C là trung điểm của đoạn AO . Một đường thẳng a vuông góc với AB tại C cắt nửa đường tròn (O) tại I . Trên đoạn CI kay điểm k bất kì (K không trùng với C và I ). Tia AK cắt nửa đường tròn (O) tại M, tiếp tuyến của nửa đường tròn (O) tại M cắt đường thẳng a tại N , tia BM cắt đường thẳng a tại D
a) Chứng minh rằng tam giác MNK cân
b) Chứng minh rằng khi K thay đổi trên đoạn thẳng CI thì tâm đường tròn ngoại tiếp tam giác AKD luôn thuộc một đường thẳng cố định
Cho nửa đường tròn tâm (O) đường kính AB = 2R. I là trung điểm của OA, IK vuông góc với AB cắt nửa đường tròn tại K. Điểm C bất kỳ thuộc đoạn IK, AC cắt nửa đường tròn tại M. Tiếp tuyến tại M cắt IK tại N; IK cắt BM tại D. Chứng minh tam giác CMN cân Tính CD theo R trường hợp C là trung điểm của IK. c) Gọi E là điểm đốia xứng của B qua I. Chứng minh khi C chuyển động trên IK thì tâm đường tròn ngoại tiếp ACD di động trên một đường cố định.
Cho nửa đường tâm O , đường kính AB = 4 cm . Kẻ các tiếp tuyến Ax , By cùng phía với nửa đường tròn đối với AB . Gọi C là một điểm thuộc tia Ax . Kẻ tiếp tuyến CE với nửa đường tròn ( E là tiếp điểm ) , CE cắt By ở D .
a . Chứng minh rằng COOD = 90o ( Mình ko biết viết o ở trên không như trong sách ) .
b . Chứng minh rằng hình tam giác bằng chữ A ( ko biết viết hình ) AEB và hình tam giác bằng chữ A ( lại thế ) COD đồng dạng
c . Gọi I là trung điểm của CD . Vẽ đường tròn tâm I bán kính IC . Chứng minh rằng AB là tiếp tuyến của đường tròn ( i ) .
đ . Xác định vị trí của C trên tia Ax để có độ dài nhỏ nhất .