tìm x,y thuộc Z thỏa mãn: x^2-6xy+13y^2=100
1/ tìm các số nguyên x,y thỏa mãn :x2-6xy+13y2=100
2/ tìm giá trị lớn nhất của biểu thức:1-3x-2x2
Đặt A=x^2-6xy+13y^2=100
Biến đổi A ta được A=(x-3y)^2 + (2y)^2 =100
Do 100=6^2 + 8^2 suy ra hoặc x-3y =6 và 2y = 8 hoặc x-3y=8 và 2y=6
giải ra ta được (x;y)={(18;4);(17;3)}
Đặt A=1-3x-2x^2 =-(2x^2+3X-1)
biến đổi A ta được A= -1/2 - 2(x+3/2) =< -1/2
Dấu = xảy ra <=> x=-3/2
Vậy biểu thức có giá trị lớn nhất là -1/2 <=> x=-3/2
Tìm các số nguyên dương x , y thỏa mãn :
\(x^2-6xy+13y^2=100\)
\(2x^2+4x=19-3y^2\)
Tìm x ; y thuộc Z+ thảo mãn : x2 - 6xy + 13y2 = 100
\(\Leftrightarrow\left(x-3y\right)^2+4y^2=100=10^2\)
\(0\le2y\le10\Rightarrow0\le y\le5\)
\(\left[{}\begin{matrix}y=5\Rightarrow x=15\\y=4\Rightarrow x=6\\y=3\Rightarrow x=1\\y=0\Rightarrow x=10;y=2;1\Rightarrow x\notin Z\end{matrix}\right.\)
Giair phương trình sau : \(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)
Tìm tất cả các số nguyên dương x,y thỏa mãn phương trình
x2-100=6xy-13y2
Ta có \(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)
\(\Leftrightarrow\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)
\(\Leftrightarrow\frac{x+15}{13}+\frac{2\left(x+15\right)}{15}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)=0\Leftrightarrow x+15=0\)vì \(\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)\ne0\)
\(\Leftrightarrow x=-15\)
Vậy \(x=-15\)
giải pt: (x-20)+(x-19)+......+100+101=101
Tìm các số nguyên dương x,y thỏa mãn : x^2 -6xy +13y^2 = 100
\(x^2-6xy+9y^2+4y^2=100\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(2y\right)^2=6^2+8^2=0^2+10^2\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=6\\2y=8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-3y=8\\2y=6\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-3y=0\\2y=10\end{matrix}\right.\)
1/ x^2 - 25 = y(y+6)
2/ x^2 - 6xy + 13y^2 =100
Tìm x y biết chúng là số nguyên
Bài 1 : Tìm x,y thuộc Z
y2 = x2 + x + 1
Bài 2 : Tìm x,y thuộc Z
a) x2 - 3y2 = 17
b) x2 - 5y2 = 17
c) x2 + x + 6 = y2
d) x2 - 6xy + 13y2 = 100
PLEASE ! HELP ME ! AI LÀM ĐÚNG MÌNH SẼ TICK CHO
THANK YOU!!!!!!!!
phần d) bài 2 mình làm đc rồi mn ko cần làm phần đấy nữa đâu
Tìm cặp số x,y thỏa mãn a_x^2+y^2=25 b_2x^2+y^2=100 (x,y thuộc Z)
a) Ta có: \(x^2+2y^2+2z^2-2xy-2yz-2z=4\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)=5\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2=5\)
Mà \(5=0^2+1^2+2^2\) nên ta có dễ dàng xét được các TH
Làm tiếp nhé!
b) Ta có: \(x^2+13y^2-6xy=100\)
\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+4y^2=100\)
\(\Leftrightarrow\left(x-3y\right)^2=100-4y^2\)
Mà \(\hept{\begin{cases}\left(x-3y\right)^2\ge0\\100-4y^2\le100\end{cases}}\Rightarrow0\le100-4y^2\le100\)
\(\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)
Ta có các TH sau:
Nếu \(y=0\Rightarrow x^2=100\Rightarrow x=\pm10\)
Nếu \(y=\pm3\Leftrightarrow\orbr{\begin{cases}\left(x-9\right)^2=64\\\left(x+9\right)^2=64\end{cases}}\Rightarrow x\in\left\{17;1;-17;-1\right\}\)
... Tự làm tiếp nhé