Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đàm Vân Anh
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Trần Kim Khánh
18 tháng 1 2018 lúc 14:11

(a^2+b^2+c^2) x 2 = 2 x (a^4+b^4+c^4)

suy ra: (a+b+c)^2 x 2 = (a+b+c)^4 x 2

Mà a+b+c= 0(gt)

suy ra: 0^2 x 2=0^4 x 2

0 = 0

=)))

Tran Thi Xuan
Xem chi tiết
Võ Thị Quỳnh Giang
13 tháng 8 2017 lúc 15:08

1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy)   (vì x-2y=5 và x^2+4y^2=29)     (1)

Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)

                                                                                          => xy=1    (2)

Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155

Vậy gt của bt A là 155

2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab

=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)

=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)

=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)

Chirikatoji
Xem chi tiết
Lizy
Xem chi tiết
Lizy
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2021 lúc 0:06

BĐT này do giáo sư Vasile đề xuất, và đây là lời giải của ông ấy:

Do vai trò của các biến là như nhau, ko mất tính tổng quát, giả sử \(a^2=max\left\{a^2;b^2;c^2;d^2\right\}\)

\(\Rightarrow a^2\ge\dfrac{b^2+c^2+d^2}{3}\)

Đặt \(x^2=\dfrac{b^2+c^2+d^2}{3}\Rightarrow x^2\le a^2\) (1)

Đồng thời \(x^2=\dfrac{b^2+c^2+d^2}{3}\ge\dfrac{1}{9}\left(b+c+d\right)^2=\dfrac{a^2}{9}\Rightarrow a^2\le9x^2\) (2)

\(\left(1\right);\left(2\right)\Rightarrow\left(a^2-x^2\right)\left(a^2-9x^2\right)\le0\) (3)

Ta có:

\(b^4+c^4+d^4=\left(b^2+c^2+d^2\right)^2-2\left(b^2c^2+c^2d^2+b^2d^2\right)\le\left(b^2+c^2+d^2\right)^2-\dfrac{2}{3}\left(bc+cd+bd\right)^2\)

\(=\left(b^2+c^2+d^2\right)^2-\dfrac{1}{6}\left[\left(b+c+d\right)^2-\left(b^2+c^2+d^2\right)\right]^2=9x^4-\dfrac{1}{6}\left(a^2-3x^2\right)^2=\dfrac{45x^4+6a^2x^2-a^4}{6}\)

Do đó:

\(12\left(a^4+b^4+c^4+d^4\right)\le12a^4+12.\dfrac{45x^4+6a^2x^2-a^4}{6}=90x^4+12a^2x^2+10a^4\)

Nên ta chỉ cần chứng minh:

\(7\left(a^2+3x^2\right)^2\ge90x^4+12a^2x^2+10a^4\)

\(\Leftrightarrow a^4-10a^2x^2+9x^4\le0\)

\(\Leftrightarrow\left(a^2-9x^2\right)\left(a^2-x^2\right)\le0\) (đúng theo (3))

Vậy BĐT được chứng minh hoàn tất.

Dấu "=" xảy ra khi \(b=c=d=-\dfrac{a}{3}\) và các hoán vị của chúng

Vô danh
Xem chi tiết
Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:31

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:08

-Tham khảo:

undefined

Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:12

-Tham khảo:

undefined

Quân Vũ Khắc
Xem chi tiết