Những câu hỏi liên quan
Mi Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 7:58

Ta có : \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)

\(\Leftrightarrow\frac{a+\left(b-c\right)}{b-c}-1+\frac{b+\left(c-a\right)}{c-a}-1+\frac{c+\left(a-b\right)}{a-b}-1=0\)

\(\Leftrightarrow\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{a+c}{\left(b-c\right)\left(a-b\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

nguyentancuong
13 tháng 7 2016 lúc 0:06

Từ gt ta có : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0

Từ đó suy ra điều phải chứng minh

Minh
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
1 tháng 8 2020 lúc 8:33

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:28

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:50

3a biến đổi tí là xong

b tuong tự bài 1 

Khách vãng lai đã xóa
pham thi thu trang
Xem chi tiết
tth_new
Xem chi tiết
không cần biết
Xem chi tiết
Đỗ Ngọc Hải
3 tháng 6 2015 lúc 20:33

Ta chuyển vế rồi quy đồng vế phải:

a/(b-c)=-(ab-b2+c2-ac)/(c-a)(a-b) (1)

b/(c-a)=-(a2-ab+bc-c2)/(b-c)(a-b) (2)

c/(a-b)=-(b2-bc+ac-a2)/(c-a)(b-c) (3)

Ta phân tích phần phải chứng minh:

a/(b-c)2+b/(c-a)2+c/(a-b)2=a/(b-c)x1/(b-c)+b/(c-a)x1/(c-a)+c/(a-b)x1/(a-b)

Thay lần lượt (1) (2) (3) vào ta đc: -(ab-b2+c2-ac)/(c-a)(a-b)(b-c)-(a2-ab+bc-c2)/(b-c)(a-b)(c-a)-(b2-bc+ac-a2)/(c-a)(b-c)(a-b)

 Ta thấy biểu thức trên có cùng mẫu nên ta cộng tất cả tử số :

          =(-ab+b2-c2+ac-a2+ab-ac+c2-b2+bc-ac+a2)/(c-a)(b-c)(a-b)

          =0/(c-a)(b-c)(a-b)

          =0     =>đpcm

Đỗ Lê Tú Linh
3 tháng 6 2015 lúc 21:00

ừm, bạn giải giỏi lắm, 

Đỗ Ngọc Hải
24 tháng 12 2017 lúc 11:13

Hello mn, ib kp đi 

Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
23 tháng 8 2020 lúc 12:03

Phân tích Trước hết ta dự đoán dấu "=" xảy ra khi a=b=c=1. Quan sát Bất Đẳng Thức ta nhận thấy các dấu hiệu sử dụng Bất Đẳng Thức Bunhiacopxki dạng phân thức, sử dụng kĩ thuật đánh giá mẫu

Bài giải: Suy nghĩ đầu tiên khi quan sát Bất Đẳng Thức đó là dấu hiệu áp dụng Bất Đẳng Thức Bunhiacopxki dạng phân thức. Như vậy khi đó ta được

\(\frac{a^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{b^4}{\left(a+c\right)\left(a^2+c^2\right)}+\frac{c^4}{\left(a+b\right)\left(a^2+b^2\right)}\)\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(b+c\right)\left(b^2+c^2\right)+\left(c+a\right)\left(c^2+a^2\right)+\left(a+b\right)\left(a^2+b^2\right)}\)

Như vậy ta cần chỉ ra được \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(b+c\right)\left(b^2+c^2\right)+\left(a+c\right)\left(a^2+c^2\right)+\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{3}{4}\)

Để ý thấy khi khai triển mẫu thì xuất hiện đại lượng \(a^3+b^3+c^3\)và đánh giá đại lượng đó theo kiểu \(a^3+b^3+c^2\le?̸\)

rất phức tạp. Do đó đánh giá một cách trực tiếp như vậy có vẻ không đem lại hiệu quả. Như vậy để áp dụng hiểu quả ta cần biến đổi Bất Đẳng Thức về một dạng khác

Chú ý là tại các mẫu xuất hiện tích của 2 đại lượng do đó ta sẽ đưa một đại lượng lên trên tử số. Khi đó ta có các cách biến đổi là

\(\orbr{\begin{cases}\frac{a^4}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{\left(\frac{a^2}{\sqrt{b+c}}\right)^2}{b^2+c^2}\\\frac{a^4}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{\left(\frac{a^2}{\sqrt{b^2+c^2}}\right)^2}{b+c}\end{cases}}\)

Để ý rẳng sau khi áp dụng thì ta thu được là tổng các mẫu đó, do đó cần chú ý đến giả thiết a+b+c=3 thì ta chọn cách biến đổi thứ hai. Khi đó BĐT cần chứng minh trở thành

\(\frac{\left(\frac{a^2}{\sqrt{b^2+c^2}}\right)^2}{b+c}+\frac{\left(\frac{b^2}{\sqrt{a^2+c^2}}\right)^2}{a+c}+\frac{\left(\frac{c^2}{\sqrt{a^2+b^2}}\right)^2}{a+b}\ge\frac{3}{4}\)

Đến đây áp dụng BĐT Cauchy ta được \(\frac{\left(\frac{a^2}{\sqrt{b^2+c^2}}\right)^2}{b+c}+\frac{\left(\frac{b^2}{\sqrt{a^2+c^2}}\right)^2}{a+c}+\frac{\left(\frac{c^2}{\sqrt{a^2+b^2}}\right)^2}{a+b}\ge\frac{\left(\frac{a^2}{\sqrt{b^2+c^2}}+\frac{b^2}{\sqrt{a^2+c^2}}+\frac{c^2}{\sqrt{a^2+b^2}}\right)^2}{2\left(a+b+c\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được

\(\frac{a^2}{\sqrt{b^2+c^2}}+\frac{b^2}{\sqrt{a^2+c^2}}+\frac{c^2}{\sqrt{a^2+b^2}}\ge\frac{3}{\sqrt{2}}\)

Như vậy sau một số bước đánh giá ta đưa được về một bất đẳng thức có vẻ đơn giản hơn bất đẳng thức cần chứng minh và bất đẳng thức lúc này cũng có dấu hiệu của BĐT Bunhiacopxki dạng phân thức, khi đó ta được 

\(\frac{a^2}{\sqrt{b^2+c^2}}+\frac{b^2}{\sqrt{a^2+c^2}}+\frac{c^2}{\sqrt{a^2+b^2}}\ge\frac{\left(a+b+c\right)^2}{\sqrt{b^2+c^2}+\sqrt{a^2+c^2}+\sqrt{a^2+b^2}}\)

Và ta cần chứng minh được \(\sqrt{b^2+c^2}+\sqrt{a^2+c^2}+\sqrt{a^2+b^2}\le3\sqrt{2}\)tuy nhiên đánh giá này hoàn toàn sai vì \(\sqrt{b^2+c^2}+\sqrt{a^2+c^2}+\sqrt{a^2+b^2}\ge\frac{1}{\sqrt{2}}\left(a+b+c\right)=\frac{3}{\sqrt{2}}\)

Như vậy để đảm bảo các đánh giá đùng chiều ta cần nâng lũy thừa của các phân số lên, do đó ta có đánh giá

\(\frac{a^2}{\sqrt{b^2+c^2}}+\frac{b^2}{\sqrt{a^2+c^2}}+\frac{c^2}{\sqrt{a^2+b^2}}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2\sqrt{b^2+c^2}+b^2\sqrt{a^2+c^2}+c^2\sqrt{a^2+b^2}}\)

Mặt khác theo BĐT Bunhiacopxki ta được

 \(a^2\sqrt{b^2+c^2}+b^2\sqrt{a^2+c^2}+c^2\sqrt{a^2+b^2}\)\(\le\sqrt{\left(a^2+b^2+c^2\right)\left[a^2\left(b^2+c^2\right)+b^2\left(a^2+c^2\right)+c^2\left(a^2+b^2\right)\right]}\)\(=\sqrt{2\left(a^2+b^2+c^2\right)\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

Do đó ta được \(\frac{\left(a^2+b^2+c^2\right)^2}{a^2\sqrt{b^2+c^2}+b^2\sqrt{c^2+a^2}+c^2\sqrt{a^2+b^2}}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\sqrt{2\left(a^2+b^2+c^2\right)\left(a^2b^2+b^2c^2+c^2a^2\right)}}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 8 2020 lúc 12:06

*Đang giải bấm nhầm gửi trả lời, làm tiếp*

Ta cần chỉ ra được \(\frac{\left(a^2+b^2+c^2\right)^2}{\sqrt{2\left(a^2+b^2+c^2\right)\left(a^2b^2+b^2c^2+c^2a^2\right)}}\ge\frac{3}{\sqrt{2}}\)

Để ý thấy rằng

\(a^2+b^2+c^2\ge\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(\sqrt{a^2+b^2+c^2}\ge\frac{a+b+c}{\sqrt{3}}=\sqrt{3}\)

Nhân theo vế 2 BĐT trên ta được điều phải chứng minh 

Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 8 2020 lúc 12:19

Cách làm trên đúng tuy nhiên quá dài nên mình làm theo 1 cách khác ngắn hơn nhiều. Ta thấy rằng trong mỗi phân thức tử số bậc bốn và mẫu số bậc ba, chú ý đến giả thiết a+b+c=3 ta có thể đồng bậc như sau

\(\frac{a^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{b^4}{\left(a+c\right)\left(a^2+c^2\right)}+\frac{c^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{a+b+c}{4}\)

Do đó ta hướng đến cách đơn giản hóa mẫu số, điều này làm ta nghĩ đến một đánh giả kiểu \(\left(x+y\right)\left(x^2+y^2\right)\le2\left(x^3+y^3\right)\)Đây là một đánh giá chứng minh được nhờ phép biến đổi tương đương 

\(\frac{a^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{b^4}{\left(a+c\right)\left(a^2+c^2\right)}+\frac{c^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{a^4}{2\left(b^3+c^2\right)}+\frac{b^4}{2\left(a^3+c^3\right)}+\frac{c^4}{2\left(a^3+b^3\right)}\) Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được 

\(\frac{a^4}{2\left(b^3+c^3\right)}+\frac{b^4}{2\left(a^3+c^3\right)}+\frac{c^4}{2\left(a^3+b^3\right)}\ge\frac{a+b+c}{4}\)

Bất Đẳng Thức này có thể chứng minh bằng cách áp dụng đồng thời Bất Đẳng Thức Bunhiacopxki dạng phân thức và Bất Đẳng Thức Cauchy 

Khách vãng lai đã xóa
phan gia huy
Xem chi tiết
Đinh Đức Hùng
2 tháng 10 2017 lúc 20:57

từ đề bài \(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(a-b\right)\left(c-a\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)

Tương tự : \(\hept{\begin{cases}\frac{b}{\left(c-a\right)^2}=\frac{-cb+c^2-a^2+ab}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\\\frac{c}{\left(a-b\right)^2}=\frac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\end{cases}}\)

Cộng vế với vế ta được : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\)

\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ab-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}=0\)(đpcm)

nobita
2 tháng 10 2017 lúc 20:51

tôi lớp 7 mà

phan gia huy
2 tháng 10 2017 lúc 20:52

huhuhu

Fire Sky
Xem chi tiết
tth_new
9 tháng 8 2019 lúc 18:19

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

tth_new
9 tháng 8 2019 lúc 18:29

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

tth_new
14 tháng 11 2019 lúc 13:39

Cách nữa cho bài 2:

2a) Ta có: \(4\left(a^2+1+2\right)\left(1+1+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2\)

Hay \(4\left(a^2+3\right)\left(2+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2=VP\)

Như vậy ta quy bài toán về chứng minh: \(\left(b^2+3\right)\left(c^2+3\right)\ge4\left(2+\frac{\left(b+c\right)^2}{2}\right)\)

\(\Leftrightarrow b^2c^2+b^2+c^2+1\ge4bc\Leftrightarrow\left(bc-1\right)^2+\left(b-c\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a = b = c = 1

b) Áp dụng BĐT Bunhiacopxki:\(\left(a^2+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+b^2+c^2+\frac{1}{2}\right)\ge\frac{1}{4}\left(a+b+c+1\right)^2\)

\(\Rightarrow\frac{5}{4}\left(a^2+1\right)\left(b^2+c^2+\frac{3}{4}\right)\ge\frac{5}{16}\left(a+b+c+1\right)^2\)

Từ đó ta có thể quy bài toán về chứng minh: \(\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(b^2+c^2+\frac{3}{4}\right)\)

...

Bài 3:Sửa đề a, b, c >0

Có:  \(\frac{a^3}{b^2}+\frac{a^3}{b^2}+b\ge3\sqrt[3]{\frac{a^6}{b^3}}=\frac{3a^2}{b}\)

Tương tự: \(\frac{2b^3}{c^2}+c\ge\frac{3b^2}{c};\frac{2c^3}{a^2}+a\ge\frac{3c^2}{a}\)

Cộng theo vế 3 BĐT trên: \(2\left(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\right)+a+b+c\ge3\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(\ge2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+a+b+c\)

Từ đó ta có đpcm.

Khách vãng lai đã xóa