Cho tứ diện ABCD có AB=AC, DB=DC
cm: AD⊥BC
Cho tứ diện ABCD có các cạnh AB, AC, AD đôi một vuông góc với nhau AB=3, AC=4, AD=5. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Tính thể tích tứ diện AMNP
A. 5 2
B. 8 3
C. 20 7
D. 15 6
Cho tứ diện ABCD có các cạnh AB, AC, AD đôi một vuông góc với nhau A B = 3 , A C = 4 , A D = 5 . Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Tính thể tích tứ diện AMNP.
A. 15 6
B. 20 7
C. 8 3
D. 5 2
Đáp án D
Ta có AB, AC, AD đôi một vuông góc với nhau, do đó chọn hệ trục tọa độ Oxyz như hình vẽ.
Cho hình tứ diện ABCD. Chứng minh hệ thức: AB → . C D → + A C → . D B → + A D → . B C → = 0
Ta có
Lấy (1) + (2) + (3) ta có hệ thức cần chứng minh là:
Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau, AB = 6a, AC = 5a, AD = 4a. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Thể tích V của tứ diện AMNP là:
Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau, A B = 6 a , A C = 5 a , A D = 4 a . Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Thể tích V của tứ diện AMNP là:
A. V = 5 a 3 3 .
B. V = 20 a 3 3 .
C. V = 5 a 3
D. V = 10 a 3
Chọn C.
Phương pháp:
+) Thể tích khối tứ diện OABC có OA, OB, OC đôi một vuông góc và có độ dài các cạnh đó lần lượt là a, b, c là: V = 1 6 a b c
Cách giải:
Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau; A B = 6 a ; A C = 7 a và A D = 4 a . Gọi M, N, P tương ứng là trung điểm các cạnh BC, CD, DB. Tính thể tích V của tứ diện AMNP
A. V = 7 2 a 3
B. V = 7 a 3
C. V = 28 3 a 3
D. V = 14 a 3
Cho tứ diện ABCD có các cạnh AB, AC, AD vuông góc với nhau từng đôi một và AB = 3cm, AC = 6cm, AD = 4cm. Gọi M, N, P lần lượt là trung điểm các cạnh BC, CD, DB. Tính thể tích khối đa diện AMNP.
A. 3 a 3
B. 12 a 3
C. a 3
D. 2 a 3
Chọn A
Cách 1: Khối tứ diện ABCD được chia thành bốn tứ diện có thể tích bằng nhau.
Cách 2:
Mà M, N, P là trung điểm các cạnh BC, CD, BD nên hai tam giác BCD và MNP đồng dạng theo tỉ số
Cho khối tứ diện ABCD có AB=x,AC=AD=CB=DB= 2 3 , khoảng cách giữa AB,CD bằng 1. Tìm x, để khối tứ diện ABCD có thể tích lớn nhất.
A. x = 11
B. x = 13
C. x = 26
D. x = 22
Cho khối tứ diện ABCD có AB = x, AC =AD = CB = DB = 2 3 khoảng cách giữa AB,CD bằng 1. Tìm x, để khối tứ diện ABCD có thể tích lớn nhất.
A. x = 11
B. x = 13
C. x = 26
D. x = 22
Đáp án D
Gọi E,F lần lượt là trung điểm các cạnh AB,CD.
Ta có
Dấu bằng đạt tại x = 22