Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Minh Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 8:17

\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)

\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)

=>B<1

=>A>B

Vũ Ngọc Diệp
Xem chi tiết
Akai Haruma
12 tháng 2 2023 lúc 18:03

Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$

$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$

$> 4+0+0+0+0=4$

thanh như
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 14:40

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

dream XD
Xem chi tiết
Akai Haruma
14 tháng 5 2021 lúc 1:01

Lời giải:

Ta có: 

\(A+1=\frac{2019^{2019}+2019^{2020}}{2019^{2019}-1}=\frac{2019^{2019}.2020}{2019^{2019}-1}\)

\(B+1=\frac{2019^{2019}+2019^{2018}}{2019^{2018}-1}=\frac{2019^{2018}.2020}{2019^{2018}-1}\) \(=\frac{2019^{2019}.2020}{2019^{2019}-2019}>\frac{2019^{2019}.2020}{2019^{2019}-1}\)

$\Rightarrow B+1>A+1$

$\Rightarrow B>A$

Nguyễn Tất Nhật Nam
Xem chi tiết
Shiba Inu
29 tháng 6 2021 lúc 20:41

Ta có :

B = \(\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)

B = \(\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)

B = \(\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+1\)

B = \(2021\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+...+\dfrac{1}{2}\right)\)  (1)

Mà A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\)   (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{A}{B}=\dfrac{1}{2021}\)

 

Nguyễn Lê Phước Thịnh
29 tháng 6 2021 lúc 21:41

Ta có: \(B=\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)

\(=\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)

\(=\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+\dfrac{2021}{2021}\)

Suy ra: \(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}}{2021\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)}=\dfrac{1}{2021}\)

Giải:

Ta có:

\(B=\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\) 

\(B=1+\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)\) 

\(B=\dfrac{2021}{2021}+\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}\) 

\(B=2021.\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+...+\dfrac{1}{2}\right)\) 

\(\Rightarrow\dfrac{A}{B}=\dfrac{\left[2021.\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+...+\dfrac{1}{2}\right)\right]}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)}=2021\) 

Vậy \(\dfrac{A}{B}=2021\)

Dương Quang Hải
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Nguyen Thi Huyen
8 tháng 9 2018 lúc 11:42

Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)

\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)

\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)

\(\Rightarrow A>B.\)

Vậy \(A>B.\)

dream XD
Xem chi tiết

Giải:

Ta có: N=2019+2020/2020+2021

=>N=2019/2020+2021 + 2020/2020+2021

Vì 2019/2020 > 2019/2020+2021 ; 2020/2021 > 2020/2020+2021

=>M>N

Vậy ...

Chúc bạn học tốt!

🙂T😃r😄a😆n😂g🤣
17 tháng 4 2021 lúc 18:07

Ta có : \(\dfrac{2019}{2020}>\dfrac{2019}{2020+2021}\)

            \(\dfrac{2020}{2021}>\dfrac{2020}{2020+2021}\)

\(\Rightarrow\dfrac{2019}{2020}+\dfrac{2020}{2021}>\dfrac{2019+2020}{2020+2021}\)

\(\Rightarrow M>N\)

Nguyễn Chính Nghĩa	5A1
Xem chi tiết

A = \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) + \(\dfrac{1}{2019\times2018}\)

A = \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) +  ( \(\dfrac{1}{2018}\) - \(\dfrac{1}{2019}\))

A = \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) + \(\dfrac{1}{2018}\) - \(\dfrac{1}{2019}\)

A = ( \(\dfrac{2020}{2019}\) - \(\dfrac{1}{2019}\)) - ( \(\dfrac{2019}{2018}\) - \(\dfrac{1}{2018}\))

A = \(\dfrac{2019}{2019}\) - \(\dfrac{2018}{2018}\)

A = 1 - 1

A = 0

Nguyễn Chính Nghĩa	5A1
20 tháng 5 2023 lúc 10:47

ét o ét

Nguyễn Chính Nghĩa	5A1
20 tháng 5 2023 lúc 11:13

thank you