Rút gọn phân tử :
\(\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)
Rút gọn các phân thức :
a, \(\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)
b, \(\frac{m^4-m}{2m^2+2m+2}\)
\(\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}=\frac{\left(b-a\right)\left(d-c\right)}{\left(b-a\right)\left(b+a\right)\left(d-c\right)\left(d+c\right)}=\frac{1}{\left(a+b\right)\left(c+d\right)}\)
\(\frac{m^4-m}{2m^2+2m+2}=\frac{m\left(m^3-1\right)}{2m^2+2m+2}=\frac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\frac{m\left(m-1\right)}{2}\)
Rút gọn phân thức : \(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}.\)
Phân tích mẫu thức thành nhân tử :
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+ac^2-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)
\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right).\)
Do đó : \(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Nhận xét : Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz.\)
Đặt \(b-c=x,c-a=y,a-b=z\) thì \(x+y+z=0\)
Theo nhận xét trên : \(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3.\)
Tử:
(b - c)3 + (c - a)3 + (a - b)3
= (b - c + c - a + a - b)3 - 3(b - c + c - a)(b - c + a - b)(c - a + a - b)
= 0 - 3(b - a)(a - c)(c - b)
= 3(a - b)(a - c)(c - b)
Mẫu:
a2(b - c) + b2(c - a) + c2(a - b)
= a2(b - c) + b2c - ab2 + ac2 - bc2
= a2(b - c) - a(b2 - c2) + bc(b - c)
= a2(b - c) - a(b - c)(b + c) + bc(b - c)
= (b - c)(a2 - ab - ac + bc)
= (b - c)[a(a - b) - c(a - b)]
= (b - c)(a - b)(a - c)
\(A=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}\)
\(=\frac{3\left(c-b\right)}{b-c}\)
Rút gọn phân thức:
\(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)
Phân tích mẫu \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-c^2b\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)=-\left(b-c\right)\left(a-b\right)\left(c-a\right)\)
Đặt b - c = x, c - a = y, a - b = z
=> x + y + z = b - c + c - a + a - b = 0
Từ x+y+z=0 => x3+y3+z3=3xyz (tự c/m)
=>\(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3\)
Rút gọn phân thức:
a/\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
đâu khó đâu cái này lớp 6 chứ 8 cái gì
Xem lại đề là b2(c2 - a2) hay.b4(c2 - a2) nhé. Bạn phân tích nhân tử cho tử và mẫu rồi rút gọn là ra nhé. Không khó đâu bạn. Bạn thử làm xem nếu bí quá thì inbox mình chỉ cho
rút gọn phân thức:
\(S=\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
Rút gọn phân thức :
\(\frac{a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)}{a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)}\)
Rút gọn phân thức sau :
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
\(BT=\frac{a^2\left(b-c\right)+b^2c-b^2a+c^2a-c^2b}{a^4\left(b^2-c^2\right)+b^4c^2-b^4a^2+c^4a^2-c^4b^2}\)
\(=\frac{a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^2c^2\left(b^2-c^2\right)-\left(b^4-c^4\right)a^2}\)
\(=\frac{\left(b-c\right)\left(a^2+bc-a\left(b+c\right)\right)}{\left(b^2-c^2\right)\left(a^4+b^2c^2-a^2\left(b^2+c^2\right)\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)}{\left(b+c\right)\left(a^2-b^2\right)\left(a^2-c^2\right)}\)
\(=\frac{1}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
= \(\frac{a^2\left(b-c\right)+b^2c-c^2b-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^4c^2-c^4b^2-a^2\left(a^4-b^4\right)}\)
= \(\frac{\left(b-c\right)\left(a-b\right)\left(c-a\right)}{\left(b^2-c^2\right)\left(a^2-b^2\right)\left(c^2-a^2\right)}\)
= \(\frac{1}{\left(b+c\right)\left(a+b\right)\left(c+a\right)}\)
Rút gọn phân thức
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^2\left(b-c\right)-b^2\left(c+a\right)-c^2\left(a-b\right)+2abc}\)
Rút gọn biểu thức :
a . \(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)
b . \(\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\)