chứng minh \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}<2\sqrt[3]{3}\)
Chứng minh\(\dfrac{ab}{\sqrt{c^2+3}}\) +\(\dfrac{bc}{\sqrt{a^2+3}}\)+\(\dfrac{ac}{\sqrt{b^2+3}}\)\(\le\dfrac{3}{2}\)
Chứng minh răng nếu: \(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=3\)thì \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{9}\)
1.rút gọn
a) \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)
b) \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)
2.chứng minh rằng số \(x=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)là nghiệm của phương trình \(x^4-16x^2+32\)
3.cho A=\(\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)( gồm 100 dấu căn). chứng minh A\(\notin\)N
1/ a/ \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^6}-\sqrt{\left(\sqrt{5}-1\right)^6}\)
\(=\left(\sqrt{5}+1\right)^3-\left(\sqrt{5}-1\right)^3\)
\(=32\)
b/ \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\)
\(=\sqrt{6}-\sqrt{2}-\sqrt{3}+1\)
Câu 3/ \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}\)
\(< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{4}}}}}=2\)
Ta lại có:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\sqrt{2}>1\)
\(\Rightarrow1< A< 2\)
Vậy \(A\notin N\)
Câu 2/ Ta có:
\(x=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
\(\Leftrightarrow x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
\(\Leftrightarrow x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3.\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow x^2-4=4-2\sqrt{2+\sqrt{3}}-2\sqrt{3.\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow\frac{\left(8-x^2\right)}{2}=\sqrt{2+\sqrt{3}}+\sqrt{3.\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow\frac{\left(8-x^2\right)^2}{4}=8-2\sqrt{3}+2.\sqrt{2+\sqrt{3}}.\sqrt{3.\left(2-\sqrt{3}\right)}=8-2\sqrt{3}+2\sqrt{3}=8\)
\(\Leftrightarrow\left(x^2-8\right)^2=32\)
Ta có:
\(x^4-16x^2+32=\left(x^4-16x^2+64\right)-32\)
\(=\left(x^2-8\right)^2-32=32-32=0\)
Vậy \(x=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là nghiệm của phương trình đã cho.
Chứng minh biểu thức: \(P=(x^3-4x-1)^{2010}\) có giá trị là một số tự nhiên với \(x=\frac{\sqrt[3]{10+6\sqrt{3}}(\sqrt{3}-1)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)
x=\(\frac{\sqrt[3]{\left(1+\sqrt{3}\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}}\)
x=\(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}\)
x=3-1=2
Thay vao P=\(\left(2^3-4.2-1\right)^{2010}=\left(8-8-1\right)^{2010}=\left(-1\right)^{2010}=-1\)
Vay P co gia tri nguyen la -1
Chuc ban hoc tot
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Rút gọn A và tìm tập xác định
b) Chứng minh \(A\le\frac{2}{3}\)
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}< =0\)
Do đó: A<=2/3
Chứng minh rằng: \(\sqrt{2+\sqrt{3}}=\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\)
\(\sqrt{2+\sqrt{3}}=\sqrt{\frac{1}{2}\left(4+2\sqrt{3}\right)}=\sqrt{\frac{1}{2}}\sqrt{3+2\sqrt{3}+1}=\sqrt{\frac{1}{2}}\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{\frac{1}{2}}.\left(\sqrt{3}+1\right)=\frac{\sqrt{3}}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\left(đpcm\right)\)
Cho 3 số x,y,z thỏa mãn điều kiện: \(2x^3=9y^3=45\)và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Chứng minh rằng; \(\sqrt[3]{2x^2+9y^2+45z^2}=\sqrt[3]{2}+\sqrt[3]{9}+\sqrt[3]{45}\)
Cho 3 số x,y,z thỏa mãn điều kiện: \(2x^3=9y^3=45\)và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Chứng minh rằng; \(\sqrt[3]{2x^2+9y^2+45z^2}=\sqrt[3]{2}+\sqrt[3]{9}+\sqrt[3]{45}\)
chứng minh \(\sqrt[3]{2}+\sqrt[3]{4}\) là số vô tỉ