Tìm x thuộc Z biết :
a)A=3x=4/x-3
b)B=4x-5/2x-1
Tìm x thuộc Z , biết :
a ) |2x-1| - 3 = 5
b ) |3x-5| = 4
c ) |5x-1| = | -3-3x |
d ) |4 x-8| = | x + 1 |
e ) |3x - 5 | - | 4x + 9 | = 0
a) |2x - 1| - 3 = 5
=> |2x - 1| = 8
Có 2 TH xảy ra:
TH1 : 2x - 1 = 8 => 2x = 9 => x = 9/2 (ko thỏa mãn x thuộc Z)
TH2 : -(2x - 1) = 8 => -2x + 1 = 8 => -2x = 9 => x = -9/2 (ko thỏa mãn x thuộc Z)
b) |3x - 5| = 4
Có 2 TH xảy ra :
TH1 : 3x - 5 = 4 => 3x = 9 => x = 3
TH2 : -(3x - 5) = 4 => -3x + 5 = 4 => -3x = -1 => x = 1/3 (ko thỏa mãn x thuộc Z)
c) |5x - 1| = |-3 - 3x|
Có 2 TH xảy ra :
TH1 : 5x - 1 = -3 - 3x => 5x + 3x = -3 + 1 => 8x = -2 => x = -1/4 (ko thỏa mãn x thuộc Z)
TH2 : 5x - 1 = -(-3 - 3x) => 5x - 1 = 3 + 3x => 5x - 3x = 3 +1 => 2x = 4 => x = 2
d) |4x - 8| = |x + 1|
Có 2 TH xảy ra :
TH1 : 4x - 8 = x + 1 => 4x - x = 1 + 8 => 3x = 9 => x = 3
TH2 : 4x - 8 = -(x + 10) => 4x - 8 = -x - 10 => 4x + x = -10 + 8 => 5x = -2 => x = -2/5 (ko thỏa mãn x thuộc Z)
e) |3x - 5| - |4x + 9| = 0
=> |3x - 5| = |4x + 9|
Có 2 TH xảy ra :
TH1 : 3x - 5 = 4x + 9 => 3x - 4x = 9 + 5 => -x = 14 => x = -14
TH2 : 3x - 5 = -(4x + 9) => 3x - 5 = -4x - 9 => 3x + 4x = -9 + 5 => 7x = -4 => x = -4/7 (ko thỏa mãn x thuộc Z)
1 Tìm x,biết
a) x-14=3x+18
b) (x+7).(x-9)=0
c) /2x-5/-7=22
d)(/2x/-5)-7=22
e)/x+3/+/x+9/+/x+5/=4x
2)Tìm x;y thuộc z biết
a)(2x-1).(y+4)
b)(2x-1).(y-4)
c)(5x+1).(y-1)=4
d)5xy-5x+y=5
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
x - 14 = 3x + 18
x - 3x = 18 + 14
-2x= 32
x= 32 : (-2)
x=-16
Tìm x thuộc Z:
a, 100 - x - 2x - 3x - 4x = 90
b, 3(x + 1) + 2(x - 3) = 7
c, -5(3 - x) + 3 = x
d, 4(3 - 2x) - 5(6 - 7x) = 9
a,100-x-2x-3x-4x=90
100-10x=90
10.(10-x)=90
10-x=9
x=10-9=1
Vậy....
b,3(x+1)+2.(x-3)=7
3x+3+2x-6=7
5x=7-3+6
5x=10
x=2
c,-5(3-x)+3=x d,4.(3-2x)-5(6-7x)=9
-15+5x+3=x 12-8x-30+35x=9
-12+5x=x 18+27x=9
-12=-4x 27x=9-18=-9
x=-12/-4=3 x=-9/27=-1/3
Tìm x thuộc Z biết :
a, 3x+5x-10=2x-4x-30
b, -2.|x+5|=-8
c, (x-1)(x+7)>0
d, |x^2+1|-x^2 +3x=-8
e, 3^4.(x-2)^2=9^4
Câu a tự làm nhé
b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Leftrightarrow32(2x+3)=24(3x-1)\)
\(\Leftrightarrow64x+96=72x-24\)
\(\Leftrightarrow64x+96-72x=-24\)
\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)
2. a. \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\) và x + y + z = 52
Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{52}{13}=4\)\((\)áp dụng tính chất dãy tỉ số bằng nhau \()\)
Vậy : \(\hept{\begin{cases}\frac{x}{3}=4\\\frac{y}{4}=4\\\frac{z}{6}=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=12\\y=16\\z=24\end{cases}}\)
Câu2: Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến.
a) -2x(x-5)+3(x-1)+2x^2-13x
b)-x^2(2x^2 - x - 3)+x(x^2+2x^3+3)-3x(x^2+x)+x^3-3x
Câu3: Tìm x, biết
a) 5x^2-5x(x-5)=10x-35.
b) 4x(x - 5) -7x(x - 4) + 3x^2 = 4 - x
Câu4: Tính giá trị biểu thức sau:
a) A=2x(3x^2-2x)+3x^2(1-2x)+x^2-7 với x = -2
b) B=x^5-15x^4+16x^3-29x^2+13x với x =14
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
Câu 3:
a) \(5x^2-5x\left(x-5\right)=10x-35\)
\(\Leftrightarrow5x^2-5x^2+25x=10x-35\)
\(\Leftrightarrow25x=10x+35\)
\(\Leftrightarrow15x=35\)
\(\Leftrightarrow x=\dfrac{35}{15}=\dfrac{7}{3}\)
Vậy nghiệm của phương trình là \(x=\dfrac{7}{3}\)
b) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=4-x\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=4-x\)
\(\Leftrightarrow8x=4-x\)
\(\Leftrightarrow9x=4\)
\(x=\dfrac{4}{9}\)
Vậy nghiệm của phương trình là \(x=\dfrac{9}{4}\)
Tìm số nguyên x,y biết:
a)3x+xy-y-5=0
b) A= 5x- 2\x - 3 thuộc Z
c) B = 6x - 1\ 3x + 2 thuộc Z
d) C= 10x\ 5x - 2 thuộc Z
e) D= 19\ x- 1 * x\9 thuộc Z
f) E = 4x + 5 \ x - 3 thuộc Z
b) A=\(\frac{5x-2}{x-3}=\frac{5x-15+13}{x-3}=\frac{5x-15}{x-3}+\frac{13}{x-3}=\frac{5\left(x-3\right)}{x-3}+\frac{13}{x-3}=5+\frac{13}{x-3}\)
Để A thuộc Z thì \(5+\frac{13}{x-3}\in Z\)
=>13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
x-3=-1 x-3=1 x-3 =-13 x-3=13
x =-1+3 x =1+3 x =-13+3 x =13+3
x=2 x =4 x=-10 x=16
Vậy x=2;4;-10;16 thì A thuộc Z
c)B=\(\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=\frac{6x+4}{3x+2}+\frac{-5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{-5}{3x+2}=2+\frac{-5}{3x+2}\)
Để B thuộc Z thì \(2+\frac{-5}{3x+2}\in Z\)
=>-5 chia hết cho 3x+2
=>3x+2\(\in\)Ư(-5)={-1;1;-5;5}
3x+2=-1 3x+2=1 3x+2=-5 3x+2=5
3x =-3 3x =-1 3x =-7 3x =3
x =-1 x =-1/3 x =-7/3 x =1
Vậy x=-1;-1/3;-7/3;1 thì B thuộc Z
d) C=\(\frac{10x}{5x-2}=\frac{10x-4+4}{5x-2}=\frac{10-4}{5x-2}+\frac{4}{5x-2}=\frac{2\left(5x-2\right)}{5x-2}+\frac{4}{5x-2}=2+\frac{4}{5x-2}\)
Để C thuộc Z thì \(2+\frac{4}{5x-2}\in Z\)
=> 4 chia hết cho 5x-2
=>5x-2\(\in\)Ư(4)={-1;1;-2;2;-4;4}
5x-2=-1 5x-2=1 5x-2=2 5x-2=-2 5x-2=4 5x-2=-4
bạn tự giải tìm x như các bài trên nhé
d) bạn ghi đề mjk ko hjeu
e)E=\(\frac{4x+5}{x-3}=\frac{4x-12+17}{x-3}=\frac{4x-12}{x-3}+\frac{17}{x-3}=\frac{4\left(x-3\right)}{x-3}+\frac{17}{x-3}=4+\frac{17}{x-3}\)
Để E thuộc Z thì\(4+\frac{17}{x-3}\in Z\)
=>17 chia hết cho x-3
=>x-3 \(\in\)Ư(17)={1;-1;17;-17}
x-3=1 x-3=-1 x-3=17 x-3=-17
bạn tự giải tìm x nhé
điều cuối cùng cho mjk ****
Tìm x thuộc Z biết
a) 2x-13=15
b) 31-3(1-x)=2x
c) /3x-7/=2
d) (x-1)^4=16
e) (-4)^x=64
g) x^3 = 4x =0
a) 2x-13=15
2x = 15+13
2x = 18
x = 18:2
x =9
c. /3x-7/=2
+) Nếu 3x-7=2 thì x = 3
+)Nếu 3x-7=-2 thì x = 5/3 không thuộc Z
Vậy x = 3
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)