Giải hệ phương trình:
x2y+2y+x=4xy (1)
\(\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\end{cases}}\)
giải hệ: 8
x^2.y + 2y + x = 4xy
\(\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\)
Giair hệ phương trình \(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\end{matrix}\right.\)
ĐKXĐ: \(x;y\ne0\)
\(x^2y+2y+x=4xy\Leftrightarrow x+\frac{2}{x}+\frac{1}{y}=4\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{x}=a\\\frac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\frac{x}{y}=\frac{b}{a}\) ( hệ trở thành:
\(\left\{{}\begin{matrix}\frac{1}{a}+2a+b=4\\a^2+ab+\frac{b}{a}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+\frac{1}{a}+a+b=4\\a^2+1+b\left(a+\frac{1}{a}\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+\frac{1}{a}+a+b=4\\a\left(a+\frac{1}{a}\right)+b\left(a+\frac{1}{a}\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+\frac{1}{a}+a+b=4\\\left(a+\frac{1}{a}\right)\left(a+b\right)=4\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, \(a+\frac{1}{a}\) và \(a+b\) là nghiệm của:
\(t^2-4t+4=0\Rightarrow t=2\Rightarrow\left\{{}\begin{matrix}a+\frac{1}{a}=2\\a+b=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Giải hệ phương trình:
\(\hept{\begin{cases}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{cases}}\)
Ta có:
\(\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\)
\(\Leftrightarrow x^2y^2-2xy-1=0\)
Giải ra tìm được xy thế vô pt sau giải tiếp
Giải hệ phương trình: \(\hept{\begin{cases}xy^2+2x+y=4xy\\\frac{1}{xy}+\frac{1}{y^2}+\frac{y}{x}=3\end{cases}}\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\frac{x^2}{y^2+2y+1}+\frac{y^2}{x^2+2x+1}=\frac{1}{2}\\4xy=\left(x+1\right)\left(y+1\right)\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=\frac{1}{2}\\\left(\frac{x}{y+1}\right)\left(\frac{y}{x+1}\right)=\frac{1}{4}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{x}{y+1}=u\\\frac{y}{x+1}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u^2+v^2=\frac{1}{2}\\uv=\frac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u^2+v^2=\frac{1}{2}\\2uv=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow u^2-2uv+v^2=0\Rightarrow u=v\)
\(\Rightarrow\left[{}\begin{matrix}u=v=\frac{1}{2}\\u=v=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\frac{x}{y+1}=\frac{1}{2}\\\frac{y}{x+1}=\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}\frac{x}{y+1}=-\frac{1}{2}\\\frac{y}{x+1}=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x=y+1\\2y=x+1\end{matrix}\right.\\\left\{{}\begin{matrix}2x=-y-1\\2y=-x-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=1\\-x+2y=1\end{matrix}\right.\\\left\{{}\begin{matrix}2x+y=-1\\x+2y=-1\end{matrix}\right.\end{matrix}\right.\) bạn tự bấm casio ra kết quả
Giải hệ phương trình: \(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\\4xy^3+y^3+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\end{cases}}\)
\(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\left(1\right)\\4xy^3+y^2+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\left(2\right)\end{cases}}\)
\(VP\left(1\right)=\sqrt{\frac{1}{4}-\left(xy-\frac{1}{2}\right)^2}\le\frac{1}{2}\Rightarrow VT\left(1\right)=y^6+y^3+2x^2\le\frac{1}{2}\)
\(\Leftrightarrow2x^2+2y^3+4x^2\le1\left(3\right)\)
Từ (2)(3) => \(8xy^3+2y^3+2\ge2y^6+4x^2+4x^2+2\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow8xy^3+2\ge2y^6+8x^2+2\sqrt{2+\left(2x-y\right)^2}\)
\(\Leftrightarrow4xy^3+1\ge y^6+4x^2+\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow1-\sqrt{1+\left(2x-y\right)^2}\ge y^6-4xy^3+4x^2=\left(y^3-2x\right)^2\left(4\right)\)
\(VT\left(4\right)\le0;VP\left(4\right)\ge0\). Do đó:
(4) \(\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=2x\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=y\end{cases}}}\)<=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
Thử lại chỉ có \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)thỏa mãn
Vậy hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)
Giải hệ phương trình \(\hept{\begin{cases}xy-x-y=5\\\frac{1}{x^2-2x}+\frac{1}{y^2-2y}=\frac{2}{3}\end{cases}}\)
Hpt cho tương đương:
\(\hept{\begin{cases}xy-x-y+1=6\\\frac{1}{\left(x^2-2x+1\right)-1}+\frac{1}{\left(y^2-2y+1\right)-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(y-1\right)=6\\\frac{1}{\left(x-1\right)^2-1}+\frac{1}{\left(y-1\right)^2-1}=\frac{2}{3}\end{cases}}}\)
Đặt \(x-1=a,y-1=b\)(dễ thấy a,b khác 0). Khi đó hệ trở thành:
\(\hept{\begin{cases}ab=6\\\frac{1}{a^2-1}+\frac{1}{b^2-1}=\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{6}{a}\\\frac{1}{a^2-1}+\frac{1}{\frac{36}{a^2}-1}=\frac{2}{3}\left(1\right)\end{cases}}}\)
Giải (1) \(\Leftrightarrow\frac{1}{a^2-1}+\frac{a^2}{36-a^2}=\frac{2}{3}\Leftrightarrow\frac{3\left(36-a^2\right)+3a^2\left(a^2-1\right)}{3\left(a^2-1\right)\left(36-a^2\right)}=\frac{2\left(a^2-1\right)\left(36-a^2\right)}{3\left(a^2-1\right)\left(36-a^2\right)}\)
\(\Rightarrow108-3a^2+3a^4-3a^2=74a^2-2a^4-72\)
\(\Leftrightarrow a^4-16a^2+36=0\Leftrightarrow\left(a^2-8\right)^2=28\Leftrightarrow\orbr{\begin{cases}a^2=8+2\sqrt{7}\\a^2=8-2\sqrt{7}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=\sqrt{8+2\sqrt{7}}\\a=\sqrt{8-2\sqrt{7}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=1+\sqrt{7}\\a=1-\sqrt{7}\end{cases}}\)
Suy ra: \(\hept{\begin{cases}a=1+\sqrt{7}\\b=\frac{6}{a}\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=\frac{6}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1+\sqrt{7}\\b=\sqrt{7}-1\end{cases}}\) hoặc \(\hept{\begin{cases}a=1-\sqrt{7}\\b=-1-\sqrt{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2+\sqrt{7}\\y=\sqrt{7}\end{cases}}\) hoặc \(\hept{\begin{cases}x=2-\sqrt{7}\\y=-\sqrt{7}\end{cases}}\). Kết luận:...
giải hệ \(\hept{\begin{cases}xy^2+2x+y=4xy\\\frac{1}{xy}+\frac{1}{y^2}+\frac{y}{x}=3\end{cases}}\)