Tìm x, y nguyên, sao cho: 4x2-2xy-2x=y-20
tìm x;y nguyên sao cho x2+2xy+2x+y2+4y=0 ?
Rút gọn biểu thức sau: (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
(2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]
= [(2x)3 + y3] – [(2x)3 – y3]
= (2x)3 + y3 – (2x)3 + y3
= 2y3
Bài 3: Rút gọn các biểu thức sau:
1) ( x+ 3)(x2 -3x + 9) - (x3 + 54)
2) (2x + y)(4x2 + 2xy + y2 ) - (2x – y)(4x2 + 2xy + y2 )
3) (x – 1)3 – (x + 2)(x2 -2x +4) +3(x +4)(x – 4)
4) x(x + 1)(x - 1) – (x + 1)(x2 – x +1)
5) 8x3 - 5 (2x + 1)(4x2 – 4x + 1)
6) 27 + (x – 3)(x2 +3x + 9)
7) (x – 1)3 – (x +2)(x2 -2x + 4) +3(x +4)(x -4)
8) (x – 2)3 +6( x – 1)2 –(x +1)(x2 -x +1) +3x
1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)
\(=x^3+27-x^3-54\)
=-27
2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)
Tìm các cặp số nguyên \(\left(x,y\right)\) sao cho: \(3x^2-y^2-2xy-2x-2y+40=0\)
Ta đặt y = x + k với k \(\inℤ\)
Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0
<=> 3x2 - (x + k)2 - 2x(x + k) - 2x - 2(x + k) + 40 = 0
<=> k2 + 4xk + 4x + 2k - 40 = 0
<=> (k + 1)2 + 4x(k + 1) = 41
<=> (k + 1)(4x + k + 1) = 41
Ta lập bảng ta được :
k + 1 | 1 | 41 | -1 | -41 |
4x + k + 1 | 41 | 1 | -41 | -1 |
x | 10 | -10 | -10 | 10 |
k | 0 | 40 | -2 | -42 |
lại có y = x + k
ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32)
Rút gọn các biểu thức sau:
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
= ( x + 3)(x2 – 3.x + 32) – (54 + x3)
= x3 + 33 – (54 + x3)
= x3 + 27 – 54 – x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]
= [(2x)3 + y3] – [(2x)3 – y3]
= (2x)3 + y3 – (2x)3 + y3
= 2y3
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
= ( x + 3)(x2 – 3.x + 32) – (54 + x3)
= x3 + 33 – (54 + x3) = x3 + 27 – 54 – x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]
= [(2x)3 + y3] – [(2x)3 – y3]
= (2x)3 + y3 – (2x)3 + y3
= 2y3
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x
P= (x+1)3 - (x+1)3 - [ (x-1)2 +(x+1)2]
Q= (2x-y)(4x2 +2xy+y2)+(2x+y)(4x2-2xy+y2)-16x3
Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$
$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.
$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$
$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)
$P=(x+1)^3-(x-1)^3-3[(x-1)^2+(x+1)^2]$
$=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-3[(x^2-2x+1)+(x^2+2x+1)]$
$=6x^2+2-3(2x^2+1)=3(2x^2+1)-3(2x^2+1)=0$ là giá trị không phụ thuộc vào giá trị của biến.
Tìm x,y nguyên dương sao cho \(4x^2+y^2-2x-y-2xy+1=1\)
\(4x^2+y^2-2x-y-2xy+1=1\)
\(\Leftrightarrow4x^2-4xy+y^2-2x-y+2xy=0\)
\(\Leftrightarrow\left(2x-y\right)^2-2x-y+2xy=0\)
\(\Leftrightarrow x\left[\left(2x-y\right)-2x-y+2xy\right]=0\)
\(\Leftrightarrow x\left(2x-y\right)^2-2x^2+xy=0\)
\(\Leftrightarrow x\left[\left(2x-y\right)^2-2x+y\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(2x-y\right)^2-2x+y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(2.0-y\right)^2-2.0+y=0\end{cases}}}\) (thay x=0 vào biểu thức dưới)
\(\Leftrightarrow x=0\) hoặc \(y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\) (mà x;y nguyên dương )=>y=0
Vậy x=0 ;y=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\left(tm\right)\\y=-1\left(ktm\right)\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\left(tm\right)\\y=-1\left(ktm\right)\end{cases}}\end{cases}}\)
Bạn sai rồi nhé. Khi ta giải đc x=0 ở Th1 thì không được áp dụng x=0 ở th2
4x2-1
X(x+y)-6x-6y
X2-2xy+y2-z2
A2+2+2a+2ab+b2-ac-bc
9x2-1 phần 4
X2-2x-4y2-4y
9(x-y)2-4(x+y)2
(3x-2y)2-(2x-3y)2
9(x-y)2-4(x+y)2
\(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)
\(x\left(x+y\right)-6x-6y=\left(x+y\right)\left(x-6\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
\(9x^2-\dfrac{1}{4}=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)
Tìm các cặp số nguyên (x,y) sao cho: 3x2-y2-2xy-2x-2y+40=0
3x^2-y^2-2xy-2x-2y+40=0
<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0
Đặt x-y=a: 3x+y=b
PT<=>ab+a-b-1=-41
<=>(b+1)(a-1)=-41
Đến đây bạn tự giải nốt nha. cho xin phát :)
nguyễn trí tâm tks bn