Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Kiều Trang
Xem chi tiết
BUI THI HOANG DIEP
29 tháng 7 2018 lúc 10:22

vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)(do 22  > 1.2)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)(do 32>2.3)

             \(\frac{1}{4^2}< \frac{1}{3.4}\)(do 42 >3.4)

          ...

           \(\frac{1}{2002^2}< \frac{1}{2001.2002}\)(do 20022 > 2001.2002)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)(2)

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)

   \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)

   \(=\frac{1}{1}-\frac{1}{2002}\) 

    \(=\frac{2002}{2002}-\frac{1}{2002}\)

     \(=\frac{2001}{2002}< 1\)(2)

Từ (1) và (2) suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< 1\)

Bài toán được chứng minh

Nguyễn Thu Ngân
Xem chi tiết
Ngô Thị Phương Anh
Xem chi tiết
Phạm Thanh Hằng
20 tháng 5 2017 lúc 13:34

Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)

Ta thấy :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\)

\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

Nhân xét :

\(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};\)

\(...;\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+...+\)

\(\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{99}{100}\)

\(A< \dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\)

Trần Minh An
20 tháng 5 2017 lúc 21:34

Bài 1)

Đặt \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
Ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4};....;\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{100}\) < 1 \(\Rightarrow\) A < 1

Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)< 1

Nguyễn Huy Tú
20 tháng 5 2017 lúc 13:33

Bài 1:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1\left(đpcm\right)\)

Bài 2: bạn xem lại xem có phải \(S=3^0+3+3^2+...+3^{2002}\) không nhé!

Thu Trang
Xem chi tiết
JakiNatsumi
26 tháng 4 2018 lúc 21:32

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2002^2}+\dfrac{1}{2003^2}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2001.2002}+\dfrac{1}{2002.2003}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2001}-\dfrac{1}{2002}+\dfrac{1}{2002}-\dfrac{1}{2003}\)

\(A< 1-\dfrac{1}{2003}< 1\)

Vậy \(A< 1\)

Nguyễn Thị Ngọc Mai
Xem chi tiết
TRẦN THỊ BÍCH HỒNG
Xem chi tiết
Nguyễn Linh Chi
28 tháng 10 2019 lúc 11:38

Xem bài tại link này nhé!  Bài làm đúng đã đc OLM chọn.

Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
Hoàng Ninh
28 tháng 10 2019 lúc 12:52

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+......+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+.....+\frac{1}{2002}\)

Chúc em học tốt nhé!

Khách vãng lai đã xóa
TRẦN THỊ BÍCH HỒNG
28 tháng 10 2019 lúc 13:00

giúp mk bài nữa nha

Khách vãng lai đã xóa
Trần Cao Vỹ Lượng
Xem chi tiết
Nguyễn Hưng Phát
20 tháng 4 2018 lúc 14:09

Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2003^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2002.2003}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2002}-\frac{1}{2003}\)

\(=1-\frac{1}{2003}< 1\)

Vậy S<1

Trần Cao Vỹ Lượng
20 tháng 4 2018 lúc 14:12

bạn có thể giải rõ ra được ko

Võ Thái Hào
20 tháng 4 2018 lúc 14:19

ta co 1/2^2<1/1*2+1/3^2+1/2*3+...+1/2003^2 1/2002*2003

1/2^2+1/3^2+...+1/2003^2<1/1*2+1/2*3+...+1/2002*2003

1/2^2+1/3^2+...+1/2003^2<1/1-1/2+1/2-1/3+...+1/2002-1/2003

1/2^2+1/3^2+...+1/2003^2<1-1/2003

1/2^2+1/3^2+...+1/2003^2<2002/2003<1

Vậy 1/2^2+1/3^2+...+1/2003^2<1

Đỗ thị như quỳnh
Xem chi tiết
Nguyễn Thùy Chi
6 tháng 4 2017 lúc 9:31

4S=\(\dfrac{4}{2^2}-\dfrac{4}{2^4}+\dfrac{4}{2^6}-...+\dfrac{4}{2^{4n-2}}-\dfrac{4}{2^{4n}}+...+\dfrac{4}{2^{2002}}-\dfrac{4}{2^{2004}}\)

4S=1-\(\dfrac{1}{2^2}+\dfrac{1}{2^4}-,...-\dfrac{1}{2^{2002}}\)

4S+S=1-\(\dfrac{1}{2^{2004}}\)

5S=\(\dfrac{2^{2004}-1}{2^{2004}}\)<1

\(\Rightarrow\)5S<1 hay S<\(\dfrac{1}{5}\)=0,2(đpcm)

khai112233
Xem chi tiết