Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Mến
Xem chi tiết
alibaba nguyễn
3 tháng 1 2017 lúc 18:20

\(3a^3+7b^3\ge3a^3+6b^3\)

\(=3a^3+3b^3+3b^3\)

\(\ge3\sqrt[3]{3.a^3.3.b^3.3.b^3}=9ab^2\)

Dấu = xảy ra khi a = b = 0

Trần Quốc Đạt
3 tháng 1 2017 lúc 18:09

\(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\frac{7}{2}b^3.\frac{7}{2}b^3}=ab^2.3\sqrt[3]{\frac{147}{4}}>9ab^2\)

Mạc Thiên Tử
Xem chi tiết
Nguyễn Bá Minh
Xem chi tiết
alibaba nguyễn
29 tháng 7 2017 lúc 15:35

Sửa đề:

\(3a^3+6b^3=a^3+a^3+a^3+b^3+b^3+b^3+b^3+b^3+b^3\)

\(\ge9\sqrt[9]{a^3.a^3.a^3.b^3.b^3.b^3.b^3.b^3.b^3}=9\sqrt[9]{a^9.b^{18}}=9ab^2\)

Nguyễn Bá Minh
19 tháng 8 2017 lúc 8:15

đề đúng rồi , bài cậu làm cũng đúng

Lâm Tố Như
Xem chi tiết
Akai Haruma
22 tháng 2 2018 lúc 22:24

Lời giải:

Áp dụng BDDT AM-GM ta có:

\(a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^6}\)

\(\Rightarrow 3(a^3+2b^3)\geq 9ab^2\)

Vì \(b\geq 0\Rightarrow b^3\geq 0\Rightarrow b^3+3(a^3+2b^3)\ge 3(a^3+2b^3)\geq 9ab^2\)

hay \(3a^3+7b^3\geq 9ab^2\) (đpcm)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} a^3=b^3\\ b^3=0\end{matrix}\right.\Leftrightarrow a=b=0\)

Nguyễn Phan Thục Trinh
Xem chi tiết
Đào Thu Hòa 2
8 tháng 7 2019 lúc 7:26

Bài này có nhiều cách, làm cách ngắn gọn, phổ thông nhé: 

Với \(a,b\ge0\)Áp dụng bất đẳng thức AM-GM cho ba số không âm ta có:

\(1+a+b\ge3\sqrt[3]{1.a.b}=3\sqrt[3]{ab}\)

\(a+b+ab\ge3\sqrt[3]{a.b.ab}=3\sqrt[3]{a^2b^2}\)

\(\Rightarrow\left(1+a+b\right)\left(a+b+ab\right)\ge3\sqrt[3]{ab}.3\sqrt[3]{a^2b^2}=9ab\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=1\\a=b=ab\end{cases}\Leftrightarrow a=b=1}\)

(p/s đừng ti ck cho câu trả lời này nhé)

Y
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2019 lúc 16:16

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019 lúc 14:57

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!

pro
14 tháng 5 2021 lúc 19:47

Bài thứ hai đó áp dụng bđt cauchy showas là ra rồi sử dụng tch bắc cầu tệ.

Thiện Nguyễn Ngọc
Xem chi tiết
Tăng Ngọc Đạt
Xem chi tiết
Lê Thành An
Xem chi tiết
IS
29 tháng 3 2020 lúc 18:38

ta có \(a\ge b\ge c\)

zì \(c\le b\)nên \(\left(a+b+c\right)^2\le\left(a+2b\right)^2\)

do zậy ta chỉ cần chứng minh \(9ab\ge\left(a+2b\right)^2\)

tương đương zới \(a^2-5ab+4b^2\le0\Leftrightarrow\left(a-b\right)\left(a-4b\right)\le0\)

zì \(a\ge b\)zà theo bất đẳng thức tam giác có \(a< b+c\le2b\le4b\)nên điều trên luôn đúng

zậy bất đẳng thức đc CM . dấu "=" xảy ra khi zà chỉ khi a=b=c hay tam giác ABC đều

Khách vãng lai đã xóa