Chứng minh rằng:
\(\dfrac{4}{a}+\dfrac{3}{b}\ge\dfrac{48}{3a+4b}\),\(\forall a.b>0\)
Cho a,b,c > 0. Chứng minh rằng :\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\)
với a,b,c ≥ 0 và a+b+c=3. chứng minh rằng:
(1) a/a+2bc+b/b+2ac+c/c+2ab ≥1 (2)a/2a+bc+b/2b+ac+c/2c+ab ≤ 1
1.chứng minh rằng:
\(x^2+3+\frac{1}{x^2+3}\ge\frac{10}{3},\)với mọi x
Chứng minh rằng với mọi a,b,c dương :
(1+a)(1+b)(1+c) \(\ge\) 40 với a.b.c=25
cho a,b,c\(\ge\)0,a+b+c=1.chứng minh rằng
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{9}{10}\)
Cho tam giác ABC có BC=a,AC=b,AB=c. Chứng minh rằng: \(3\left(a^3+b^3+c^3\right)+4abc\ge\dfrac{13}{27}\left(a+b+c\right)^3\)
Cho a,b,c > 0. Chứng minh rằng
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
Chứng minh rằng nếu x, y là các số thực dương thì : \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{1+xy}\)