Cho tam giác ABC có điểm M trên cạnh BC sao cho BC = 4CM. Trên cạnh AC lấy điểm N sao cho \(\dfrac{CN}{AN}\)=\(\dfrac{1}{3}\). Chứng minh MN song song với AB.
Giúp tôi với.
Mn ơi giúp mik với ạ
Bài 4: Cho tam giác ABC có AB = 16cm; AC = 20 cm. Trên cạnh AB lấy điểm M sao cho AM = 4cm. Trên cạnh AC lấy điểm N sao cho CN = 15 cm
a) Chứng minh MN // BC
b) Từ N kẻ đường thẳng d song song với AB cắt BC tại P. Chứng minh
a: AN+CN=AC
=>AN=20-15=5cm
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔAMN và ΔNPC có
góc AMN=góc NPC(=góc B)
góc ANM=góc NCP
=>ΔAMN đồng dạng với ΔNPC
Cho tam giác ABC có điểm M trên cạnh BC sao cho BC=4CM. Trên cạnh AC lấy điểm N sao cho CN/AN=1/3. Chứng minh MN // với AB
Xét ΔCAB có CN/CA=CM/CB
nên NM//AB
Cho tam giác ABC có điểm M trên cạnh BC sao cho BC = 4cm. Trên cạnh AC lấy điểm N sao cho C N A N = 1 3 Chứng minh MN song song với AB
cho tam giác ABC có AB=AC .H là trung điểm của BC a, Chứng minh tam giác ABH=ACH b, Chứng minh AH vuống góc BC c, Trên cạnh AB lấy điểm M . Trên cạnh AC lấy điểm N sao cho AM =AN .gọi E là giao điểm của AH và NM .Chúng minh MN song song với BC ( ghi giả thiết kết luận nha )
a: XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
Cho tam giác ABC, O là một điểm bất kì nằm trong tam giác. Dựng các đường thẳng DE, FK, MN tương ứng song song với AB, AC và BC sao cho F và M trên cạnh AB, E và K trên cạnh BC và N, D trên cạnh AC.
a)CMR:\(\dfrac{ÀF}{AB}+\dfrac{BE}{BC}+\dfrac{CN}{AC}=1\)
b)Đặt \(S_1=S_{OME};S_2=S_{OEK};S_3=S_{ODN};S=S_{ABC}\)
CMR\(S=\left(\sqrt{S_1}+\sqrt{S_2}+\sqrt{S_3}\right)^2\)
Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy điểm M sao cho AM = 4cm. Kẻ MN song song với BC (NAC). Tính AN?
Xét ΔABC có MN//BC
nên AM/AB=AN/AC
=>AN/9=4/6=2/3
=>AN=6cm
Cho tam giác ABC có AB = AC, trên cạnh AB lấy điểm M, trên cạnh BC lấy điểm N sao cho AM=AN. gọi H là trung điểm của BC
a/ chứng minh tam giác ABC = tam giác ACH
b/ chứng minh MN song song BC
1, cho tam giác ABC có góc A = 90 độ. Gọi M là trung điểm của cạnh AC, trên tia BM lấy điểm N sao cho M là trung điểm của đoạn BN. Chứng minh
a, CN vuông góc với AC và CN = AB
b, AN = BC và AN song song với BC
hình vẽ đấy nhé
GIAI
a ) xét tam giác AMB và tam giác CMN có
AM = MC ( M là trung điểm của AC )
góc AMB = goc CMN ( đối đỉnh )
MB = MN ( M là trung điểm của BN )
=> tam giác AMB = tam giác CMN ( c.g.c)
=> AB = CN ( 2 cạnh tương ứng )
=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )
=> CN vuông góc với AC (dpcm )
b ) chúng minh tương tự
=> tam giác ANM = tam giác CBM ( c.g.c )
=> AN = BC ( 2 cạnh tương ứng )
=> góc ANM = góc CBM ( 2 góc tương ứng )
mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC
=> AN song song BC ( dpcm)
Cho tam giác ABC cân tại A. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = CN. Gọi I là trung điểm của MN. Đường thẳng qua I song song với BC cắt AB, AC lần lượt tai D, E. Chứng minh rằng DE là đường trung bình của tam giác ABC.