tìm x,y thuộc N thoã mãn
2x + 1 = y2
Tìm x / y , biết x,y thỏa mãn
2x-y/x+y=2/3
thank các bạn giúp đc mình câu này❤❤
Đề thế này hả e
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+y\)
\(\Leftrightarrow4x=4y\)
\(\Leftrightarrow x=y\)
Vậy.....
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+2y\)
\(\Leftrightarrow4x=5y\)
\(\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
Vậy....
a làm lại nhé, nãy sai
tìm x,y thuộc z thoã mãn 2xy-x+y=3
Cho x,y,z thoã mãn (z-1)x-y=1 và x+2y=2
Chứng minh rằng \(\left(2x-y\right)\left(z^2-z+1\right)\)=7 tìm tất cả các số nguyên thoã mãn phương trình trên
Cho x,y thoã mãn : (3x-y)/(y+x) = 1/2 .Tìm x,y
Không tìm được x,y. Chỉ có thể tìm được tỉ số của x : y
Tính giá trị của biểu thức C=x2 -y2.Với x,y nguyên thoã mãn :x+3+(2y-4)2020 lớn hơn hoặc bằng 0
Không có giá trị $C$ cụ thể bạn nhé. Bạn xem lại đề xem đã viết đúng chưa vậy?
cho x, y thuộc N thoã mãn \(\frac{2010}{2011}< \frac{x}{y}< \frac{2011}{2012}\)
Tính giá trị nhỏ nhất của x+y
Tìm các số nguyên dương x, y, z thoã mãn 3^x+2^y=1+2^z
Ta thấy [TEX]y \geq 1[/TEX].
+ Nếu [TEX]y=1[/TEX] thì ta có [TEX]3^x=2^z-1[/TEX].
Xét tính chia hết cho 3 dễ thấy [TEX]z \vdots 2[/TEX]. Đặt [TEX]z=2k (k \in \mathbb{N}^*)[/TEX]
Ta có: [TEX]3^x=2^{2k}-1=(2^k-1)(2^k+1)[/TEX]
Đặt [TEX]2^k-1=3^m, 2^k+1=3^n (m,n \in \mathbb{N}^*; m+n=z) [/TEX]
Ta có: [TEX]3^n-3^m=2 \Rightarrow n=1, m=1 \Rightarrow z=2[/TEX]
[TEX]\Rightarrow z=1[/TEX]. Từ đó ta có bộ [TEX](x,y,z)=(1,1,2)[/TEX]
+ Nếu [TEX]y \geq 2[/TEX] thì ta có [TEX]2^z-2^y=3^x-1 > 0 \Rightarrow z >y[/TEX]
Lại có: [TEX]z>y \geq 2 \Rightarrow 3^x-1 \vdots 4 \Rightarrow x \vdots 2[/TEX]
Khi đó nếu [TEX]y \geq 4[/TEX] thì [TEX]3^x-1 \vdots 16 \Rightarrow x \vdots 4[/TEX]
[TEX]x=4q\Rightarrow 2^z-2^y=81^q-1\equiv 0(\text{mod 5})\Rightarrow 2^z-2^y\vdots 5\Rightarrow 2^y(2^{z-y}-1)\vdots 5[/TEX]
Từ đó [TEX]2^{z-y}-1 \vdots 5 \Rightarrow z-y=4k+2 \Rightarrow z-y \vdots 2 \Rightarrow 2^{z-y}-1 \vdots 3[/TEX]
[TEX]\Rightarrow 3^x-1 \vdots 3[/TEX](mâu thuẫn)
Suy ra [TEX]2 \leq y \leq 3[/TEX].
Nếu [TEX]y=2[/TEX] thì [TEX]3^x+3 =2^z \vdots 3[/TEX](mâu thuẫn)
Nếu [TEX]y=3[/TEX] thì [TEX]3^x+7=2^z[/TEX]. Xét đồng dư với 3 nên [TEX]z \vdots 2[/TEX].
Đặt [TEX]x=2m,z=2n \Rightarrow 2^{2n}-3^{2m}=7 \Rightarrow (2^n-3^m)(2^n+3^m)=7[/TEX]
[TEX]\Rightarrow 2^n-3^m=1,2^n+3^m=7 \Rightarrow n=2,m=1 \Rightarrow x=2,z=4[/TEX]
Vậy [TEX](x,y,z)=(1,1,2)[/TEX] hoặc [TEX](x,y,z)=(2,3,4)[/TEX]
Tìm các số nguyên x,y thoã mãn: ( 2x + 1 )( y - 5) = 12
Vì \(2x+1\): 2 dư 1
Nên \(\left(2x+1\right)\in\left\{3;-3;-1;1\right\}\)
Khi \(\hept{\begin{cases}2x+1=3\\y-5=4\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=9\end{cases}}}\)
Khi \(\hept{\begin{cases}2x+1=-3\\y-5=-4\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}}\)
Khi \(\hept{\begin{cases}2x+1=-1\\y-5=-12\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-7\end{cases}}}\)
Khi \(\hept{\begin{cases}2x+1=1\\y-5=12\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=17\end{cases}}}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;17\right);\left(-1;-7\right);\left(-2;1\right);\left(1;9\right)\right\}\)
Tôi nghĩ ra cách giải rồi. Cách giải của cậu chưa hay.Nhưng giờ đang bận làm bài tập tết nên khi nào rảnh bạn chữa cho.Cố gắng nghĩ cách hay hơn nhé!
tìm x,y thuộc N* sao cho x3+y3+4(x2+y2)+4(x+y)=16xy